1,090 research outputs found

    Linking behavior in the physics education research coauthorship network

    Get PDF
    Citation: Anderson, K. A., Crespi, M., & Sayre, E. C. (2017). Linking behavior in the physics education research coauthorship network. Physical Review Physics Education Research, 13(1), 10. doi:10.1103/PhysRevPhysEducRes.13.010121There is considerable long-term interest in understanding the dynamics of collaboration networks, and how these networks form and evolve over time. Most of the work done on the dynamics of social networks focuses on well-established communities. Work examining emerging social networks is rarer, simply because data are difficult to obtain in real time. In this paper, we use thirty years of data from an emerging scientific community to look at that crucial early stage in the development of a social network. We show that when the field was very young, islands of individual researchers labored in relative isolation, and the coauthorship network was disconnected. Thirty years later, rather than a cluster of individuals, we find a true collaborative community, bound together by a robust collaboration network. However, this change did not take place gradually-the network remained a loose assortment of isolated individuals until the mid 2000s, when those smaller parts suddenly knit themselves together into a single whole. In the rest of this paper, we consider the role of three factors in these observed structural changes: growth, changes in social norms, and the introduction of institutions such as field-specific conferences and journals. We have data from the very earliest years of the field, a period which includes the introduction of two different institutions: the first field-specific conference, and the first field-specific journals. We also identify two relevant behavioral shifts: a discrete increase in coauthorship coincident with the first conference, and a shift among established authors away from collaborating with outsiders, towards collaborating with each other. The interaction of these factors gives us insight into the formation of collaboration networks more broadly

    Holographic analysis of diffraction structure factors

    Full text link
    We combine the theory of inside-source/inside-detector x-ray fluorescence holography and Kossel lines/x ray standing waves in kinematic approximation to directly obtain the phases of the diffraction structure factors. The influence of Kossel lines and standing waves on holography is also discussed. We obtain partial phase determination from experimental data obtaining the sign of the real part of the structure factor for several reciprocal lattice vectors of a vanadium crystal.Comment: 4 pages, 3 figures, submitte

    Information and The Brukner-Zeilinger Interpretation of Quantum Mechanics: A Critical Investigation

    Full text link
    In Brukner and Zeilinger's interpretation of quantum mechanics, information is introduced as the most fundamental notion and the finiteness of information is considered as an essential feature of quantum systems. They also define a new measure of information which is inherently different from the Shannon information and try to show that the latter is not useful in defining the information content in a quantum object. Here, we show that there are serious problems in their approach which make their efforts unsatisfactory. The finiteness of information does not explain how objective results appear in experiments and what an instantaneous change in the so-called information vector (or catalog of knowledge) really means during the measurement. On the other hand, Brukner and Zeilinger's definition of a new measure of information may lose its significance, when the spin measurement of an elementary system is treated realistically. Hence, the sum of the individual measures of information may not be a conserved value in real experiments.Comment: 20 pages, two figures, last version. Section 4 is replaced by a new argument. Other sections are improved. An appendix and new references are adde

    Vorinostat with Sustained Exposure and High Solubility in Poly(ethylene glycol)-b-poly(DL-lactic acid) Micelle Nanocarriers: Characterization and Effects on Pharmacokinetics in Rat Serum and Urine

    Get PDF
    The histone deacetylase inhibitor suberoylanilide hydroxamic acid, known as vorinostat, is a promising anti-cancer drug with a unique mode of action; however, it is plagued by low water solubility, low permeability, and suboptimal pharmacokinetics. In this study, poly(ethylene glycol)-b-poly(DL-lactic acid) (PEG-b-PLA) micelles of vorinostat were developed. Vorinostat’s pharmacokinetics in rats were investigated after intravenous (i.v.) (10 mg/kg) and oral (50 mg/kg) micellar administrations and compared to a conventional PEG400 solution and methylcellulose suspension. The micelles increased the aqueous solubility of vorinostat from 0.2 mg/ml to 8.15 ± 0.60 mg/ml and 10.24 ± 0.92 mg/ml at drug to nanocarrier ratios of 1:10 and 1:15, respectively. Micelles had nanoscopic mean diameters of 75.67 ± 7.57 nm and 87.33 ± 8.62 nm for 1:10 and 1:15 micelles, respectively, with drug loading capacities of 9.93 ± 0.21% and 6.91 ± 1.19 %, and encapsulation efficiencies of 42.74 ± 1.67% and 73.29 ± 4.78%, respectively. The micelles provided sustained exposure and improved pharmacokinetics characterized by a significant increase in serum half-life, area under curve, and mean residence time. The micelles reduced vorinostat clearance particularly after i.v. dosing. Thus, PEG-b-PLA micelles significantly improved the oral and intravenous pharmacokinetics and bioavailability of vorinostat, which warrants further investigation

    Consistency of cosmic microwave background temperature measurements in three frequency bands in the 2500-square-degree SPT-SZ survey

    Full text link
    We present an internal consistency test of South Pole Telescope (SPT) measurements of the cosmic microwave background (CMB) temperature anisotropy using three-band data from the SPT-SZ survey. These measurements are made from observations of ~2500 deg^2 of sky in three frequency bands centered at 95, 150, and 220 GHz. We combine the information from these three bands into six semi-independent estimates of the CMB power spectrum (three single-frequency power spectra and three cross-frequency spectra) over the multipole range 650 < l < 3000. We subtract an estimate of foreground power from each power spectrum and evaluate the consistency among the resulting CMB-only spectra. We determine that the six foreground-cleaned power spectra are consistent with the null hypothesis, in which the six cleaned spectra contain only CMB power and noise. A fit of the data to this model results in a chi-squared value of 236.3 for 235 degrees of freedom, and the probability to exceed this chi-squared value is 46%.Comment: 21 pages, 4 figures, current version matches version published in JCA

    A Measurement of the Cosmic Microwave Background Damping Tail from the 2500-square-degree SPT-SZ survey

    Full text link
    We present a measurement of the cosmic microwave background (CMB) temperature power spectrum using data from the recently completed South Pole Telescope Sunyaev-Zel'dovich (SPT-SZ) survey. This measurement is made from observations of 2540 deg2^2 of sky with arcminute resolution at 150150\,GHz, and improves upon previous measurements using the SPT by tripling the sky area. We report CMB temperature anisotropy power over the multipole range 650<<3000650<\ell<3000. We fit the SPT bandpowers, combined with the seven-year Wilkinson Microwave Anisotropy Probe (WMAP7) data, with a six-parameter LCDM cosmological model and find that the two datasets are consistent and well fit by the model. Adding SPT measurements significantly improves LCDM parameter constraints; in particular, the constraint on θs\theta_s tightens by a factor of 2.7. The impact of gravitational lensing is detected at 8.1σ8.1\, \sigma, the most significant detection to date. This sensitivity of the SPT+WMAP7 data to lensing by large-scale structure at low redshifts allows us to constrain the mean curvature of the observable universe with CMB data alone to be Ωk=0.0030.018+0.014\Omega_k=-0.003^{+0.014}_{-0.018}. Using the SPT+WMAP7 data, we measure the spectral index of scalar fluctuations to be ns=0.9623±0.0097n_s=0.9623 \pm 0.0097 in the LCDM model, a 3.9σ3.9\,\sigma preference for a scale-dependent spectrum with ns<1n_s<1. The SPT measurement of the CMB damping tail helps break the degeneracy that exists between the tensor-to-scalar ratio rr and nsn_s in large-scale CMB measurements, leading to an upper limit of r<0.18r<0.18 (95%,C.L.) in the LCDM+rr model. Adding low-redshift measurements of the Hubble constant (H0H_0) and the baryon acoustic oscillation (BAO) feature to the SPT+WMAP7 data leads to further improvements. The combination of SPT+WMAP7+H0H_0+BAO constrains ns=0.9538±0.0081n_s=0.9538 \pm 0.0081 in the LCDM model, a 5.7σ5.7\,\sigma detection of ns<1n_s < 1, ... [abridged]Comment: 21 pages, 10 figures. Replaced with version accepted by ApJ. Data products are available at http://pole.uchicago.edu/public/data/story12

    A Comparison of Cosmological Parameters Determined from CMB Temperature Power Spectra from the South Pole Telescope and the Planck Satellite

    Get PDF
    The Planck cosmic microwave background (CMB) temperature data are best fit with a LCDM model that is in mild tension with constraints from other cosmological probes. The South Pole Telescope (SPT) 2540 deg2\text{deg}^2 SPT-SZ survey offers measurements on sub-degree angular scales (multipoles 6502500650 \leq \ell \leq 2500) with sufficient precision to use as an independent check of the Planck data. Here we build on the recent joint analysis of the SPT-SZ and Planck data in \citet{hou17} by comparing LCDM parameter estimates using the temperature power spectrum from both data sets in the SPT-SZ survey region. We also restrict the multipole range used in parameter fitting to focus on modes measured well by both SPT and Planck, thereby greatly reducing sample variance as a driver of parameter differences and creating a stringent test for systematic errors. We find no evidence of systematic errors from such tests. When we expand the maximum multipole of SPT data used, we see low-significance shifts in the angular scale of the sound horizon and the physical baryon and cold dark matter densities, with a resulting trend to higher Hubble constant. When we compare SPT and Planck data on the SPT-SZ sky patch to Planck full-sky data but keep the multipole range restricted, we find differences in the parameters nsn_s and Ase2τA_se^{-2\tau}. We perform further checks, investigating instrumental effects and modeling assumptions, and we find no evidence that the effects investigated are responsible for any of the parameter shifts. Taken together, these tests reveal no evidence for systematic errors in SPT or Planck data in the overlapping sky coverage and multipole range and, at most, weak evidence for a breakdown of LCDM or systematic errors influencing either the Planck data outside the SPT-SZ survey area or the SPT data at >2000\ell >2000.Comment: 14 pages, 7 figures. Updated 1 figure and expanded on the reasoning for fixing the affect of lensing on the power spectrum instead of varying Alen

    Extragalactic millimeter-wave point source catalog, number counts and statistics from 771 square degrees of the SPT-SZ Survey

    Full text link
    We present a point source catalog from 771 square degrees of the South Pole Telescope Sunyaev Zel'dovich (SPT-SZ) survey at 95, 150, and 220 GHz. We detect 1545 sources above 4.5 sigma significance in at least one band. Based on their relative brightness between survey bands, we classify the sources into two populations, one dominated by synchrotron emission from active galactic nuclei, and one dominated by thermal emission from dust-enshrouded star-forming galaxies. We find 1238 synchrotron and 307 dusty sources. We cross-match all sources against external catalogs and find 189 unidentified synchrotron sources and 189 unidentified dusty sources. The dusty sources without counterparts are good candidates for high-redshift, strongly lensed submillimeter galaxies. We derive number counts for each population from 1 Jy down to roughly 9, 5, and 11 mJy at 95, 150, and 220 GHz. We compare these counts with galaxy population models and find that none of the models we consider for either population provide a good fit to the measured counts in all three bands. The disparities imply that these measurements will be an important input to the next generation of millimeter-wave extragalactic source population models.Comment: 23 pages, 8 figures, submitted to Ap

    A CMB lensing mass map and its correlation with the cosmic infrared background

    Full text link
    We use a temperature map of the cosmic microwave background (CMB) obtained using the South Pole Telescope at 150 GHz to construct a map of the gravitational convergence to z ~ 1100, revealing the fluctuations in the projected mass density. This map shows individual features that are significant at the ~ 4 sigma level, providing the first image of CMB lensing convergence. We cross-correlate this map with Herschel/SPIRE maps covering 90 square degrees at wavelengths of 500, 350, and 250 microns. We show that these submillimeter-wavelength (submm) maps are strongly correlated with the lensing convergence map, with detection significances in each of the three submm bands ranging from 6.7 to 8.8 sigma. We fit the measurement of the cross power spectrum assuming a simple constant bias model and infer bias factors of b=1.3-1.8, with a statistical uncertainty of 15%, depending on the assumed model for the redshift distribution of the dusty galaxies that are contributing to the Herschel/SPIRE maps.Comment: 5 pages, 3 figures, to be submitted to ApJ
    corecore