692 research outputs found

    Density-functional study of Cu atoms, monolayers, and coadsorbates on polar ZnO surfaces

    Full text link
    The structure and electronic properties of single Cu atoms, copper monolayers and thin copper films on the polar oxygen and zinc terminated surfaces of ZnO are studied using periodic density-functional calculations. We find that the binding energy of Cu atoms sensitively depends on how charge neutrality of the polar surfaces is achieved. Bonding is very strong if the surfaces are stabilized by an electronic mechanism which leads to partially filled surface bands. As soon as the surface bands are filled (either by partial Cu coverage, by coadsorbates, or by the formation of defects), the binding energy decreases significantly. In this case, values very similar to those found for nonpolar surfaces and for copper on finite ZnO clusters are obtained. Possible implications of these observations concerning the growth mode of copper on polar ZnO surfaces and their importance in catalysis are discussed.Comment: 6 pages with 2 postscript figures embedded. Uses REVTEX and epsf macro

    Parameter Estimation in Astronomy with Poisson-Distributed Data. I. The Chi-Square-Gamma Statistic

    Full text link
    Applying the standard weighted mean formula, [sum_i {n_i sigma^{-2}_i}] / [sum_i {sigma^{-2}_i}], to determine the weighted mean of data, n_i, drawn from a Poisson distribution, will, on average, underestimate the true mean by ~1 for all true mean values larger than ~3 when the common assumption is made that the error of the ith observation is sigma_i = max(sqrt{n_i},1). This small, but statistically significant offset, explains the long-known observation that chi-square minimization techniques which use the modified Neyman's chi-square statistic, chi^2_{N} equiv sum_i (n_i-y_i)^2 / max(n_i,1), to compare Poisson-distributed data with model values, y_i, will typically predict a total number of counts that underestimates the true total by about 1 count per bin. Based on my finding that the weighted mean of data drawn from a Poisson distribution can be determined using the formula [sum_i [n_i + min(n_i,1)] (n_i+1)^{-1}] / [sum_i (n_i+1)^{-1}], I propose that a new chi-square statistic, chi^2_gamma equiv sum_i [n_i + min(n_i,1) - y_i]^2 / [n_i + 1], should always be used to analyze Poisson-distributed data in preference to the modified Neyman's chi-square statistic. I demonstrate the power and usefulness of chi-square-gamma minimization by using two statistical fitting techniques and five chi-square statistics to analyze simulated X-ray power-law 15-channel spectra with large and small counts per bin. I show that chi-square-gamma minimization with the Levenberg-Marquardt or Powell's method can produce excellent results (mean slope errors <=3%) with spectra having as few as 25 total counts.Comment: 22 pages (LaTeX+aaspp4.sty), 6 tables (PostScript format) and 12 figures (PostScript format). The PostScript version of the paper, tables, and full-resolution color figures are available at http://www.noao.edu/staff/mighell/chi-square-gamma/ To appear in the Astrophysical Journal (accepted 1998 November 20

    First-principles calculation on the transport properties of molecular wires between Au clusters under equilibrium

    Full text link
    Based on the matrix Green's function method combined with hybrid tight-binding / density functional theory, we calculate the conductances of a series of gold-dithiol molecule-gold junctions including benzenedithiol (BDT), benzenedimethanethiol (BDMT), hexanedithiol (HDT), octanedithiol (ODT) and decanedithiol (DDT). An atomically-contacted extended molecule model is used in our calculation. As an important procedure, we determine the position of the Fermi level by the energy reference according to the results from ultraviolet photoelectron spectroscopy (UPS) experiments. After considering the experimental uncertainty in UPS measurement, the calculated results of molecular conductances near the Fermi level qualitatively agree with the experimental values measured by Tao et. al. [{\it Science} 301, 1221 (2003); {\it J. Am. Chem. Soc.} 125, 16164 (2003); {\it Nano. Lett.} 4, 267 (2004).]Comment: 12 pages,8 figure

    Inference with interference between units in an fMRI experiment of motor inhibition

    Full text link
    An experimental unit is an opportunity to randomly apply or withhold a treatment. There is interference between units if the application of the treatment to one unit may also affect other units. In cognitive neuroscience, a common form of experiment presents a sequence of stimuli or requests for cognitive activity at random to each experimental subject and measures biological aspects of brain activity that follow these requests. Each subject is then many experimental units, and interference between units within an experimental subject is likely, in part because the stimuli follow one another quickly and in part because human subjects learn or become experienced or primed or bored as the experiment proceeds. We use a recent fMRI experiment concerned with the inhibition of motor activity to illustrate and further develop recently proposed methodology for inference in the presence of interference. A simulation evaluates the power of competing procedures.Comment: Published by Journal of the American Statistical Association at http://www.tandfonline.com/doi/full/10.1080/01621459.2012.655954 . R package cin (Causal Inference for Neuroscience) implementing the proposed method is freely available on CRAN at https://CRAN.R-project.org/package=ci

    A global descriptor of spatial pattern interaction in the galaxy distribution

    Full text link
    We present the function J as a morphological descriptor for point patterns formed by the distribution of galaxies in the Universe. This function was recently introduced in the field of spatial statistics, and is based on the nearest neighbor distribution and the void probability function. The J descriptor allows to distinguish clustered (i.e. correlated) from ``regular'' (i.e. anti-correlated) point distributions. We outline the theoretical foundations of the method, perform tests with a Matern cluster process as an idealised model of galaxy clustering, and apply the descriptor to galaxies and loose groups in the Perseus-Pisces Survey. A comparison with mock-samples extracted from a mixed dark matter simulation shows that the J descriptor can be profitably used to constrain (in this case reject) viable models of cosmic structure formation.Comment: Significantly enhanced version, 14 pages, LaTeX using epsf, aaspp4, 7 eps-figures, accepted for publication in the Astrophysical Journa

    Structure and Magnetism of Neutral and Anionic Palladium Clusters

    Full text link
    The properties of neutral and anionic Pd_N clusters were investigated with spin-density-functional calculations. The ground state structures are three-dimensional for N>3 and they are magnetic with a spin-triplet for 2<=N<=7 and a spin nonet for N=13 neutral clusters. Structural- and spin-isomers were determined and an anomalous increase of the magnetic moment with temperature is predicted for a Pd_7 ensemble. Vertical electron detachment and ionization energies were calculated and the former agree well with measured values for anionic Pd_N clusters.Comment: 5 pages, 3 figures, fig. 2 in color, accepted to Phys. Rev. Lett. (2001

    V-Proportion: a method based on the Voronoi diagram to study spatial relations in neuronal mosaics of the retina

    Get PDF
    The visual system plays a predominant role in the human perception. Although all components of the eye are important to perceive visual information, the retina is a fundamental part of the visual system. In this work we study the spatial relations between neuronal mosaics in the retina. These relations have shown its importance to investigate possible constraints or connectivities between different spatially colocalized populations of neurons, and to explain how visual information spreads along the layers before being sent to the brain. We introduce the V-Proportion, a method based on the Voronoi diagram to study possible spatial interactions between two neuronal mosaics. Results in simulations as well as in real data demonstrate the effectiveness of this method to detect spatial relations between neurons in different layers

    Black Hole Spectroscopy: Testing General Relativity through Gravitational Wave Observations

    Full text link
    Assuming that general relativity is the correct theory of gravity in the strong field limit, can gravitational wave observations distinguish between black hole and other compact object sources? Alternatively, can gravitational wave observations provide a test of one of the fundamental predictions of general relativity? Here we describe a definitive test of the hypothesis that observations of damped, sinusoidal gravitational waves originated from a black hole or, alternatively, that nature respects the general relativistic no-hair theorem. For astrophysical black holes, which have a negligible charge-to-mass ratio, the black hole quasi-normal mode spectrum is characterized entirely by the black hole mass and angular momentum and is unique to black holes. In a different theory of gravity, or if the observed radiation arises from a different source (e.g., a neutron star, strange matter or boson star), the spectrum will be inconsistent with that predicted for general relativistic black holes. We give a statistical characterization of the consistency between the noisy observation and the theoretical predictions of general relativity, together with a numerical example.Comment: 19 pages, 7 figure

    The dusty AGB star RS CrB: first mid-infrared interferometric observations with the Keck Telescopes

    Full text link
    We report interferometric observations of the semi-regular variable star RS CrB, a red giant with strong silicate emission features. The data were among the first long baseline mid-infrared stellar fringes obtained between the Keck telescopes, using parts of the new nulling beam combiner. The light was dispersed by a low-resolution spectrometer, allowing simultaneous measurement of the source visibility and intensity spectra from 8 to 12 microns. The interferometric observations allow a non-ambiguous determination of the dust shell spatial scale and relative flux contribution. Using a simple spherically-symmetric model, in which a geometrically thin shell surrounds the stellar photosphere, we find that ~30% to ~70% of the overall mid-infrared flux - depending on the wavelength - originates from 7-8 stellar radii. The derived shell opacity profile shows a broad peak around 11 microns (tau ~ 0.06), characteristic of Mg-rich silicate dust particles.Comment: Accepted for publication in ApJ Letter
    corecore