147 research outputs found

    Selection of radio sources for Venus balloon-Pathfinder Delta-DOR navigation at 1.7 GHz

    Get PDF
    In order to increase the success rate of the Delta-DOR (Delta-Differential One-way Range) VLBI navigational support for the French-Soviet Venus Balloon and Halley Pathfinder projects, forty-four extragalactic radio sources were observed in advance of these projects to determine which were suitable for use as reference sources. Of these forty-four radio sources taken from the existing JPL radio source catalogue, thirty-six were determined to be of sufficient strength for use in Delta-DOR VLBI navigation

    Self-organization in turbulence as a route to order in plasma and fluids

    Full text link
    Transitions from turbulence to order are studied experimentally in thin fluid layers and magnetically confined toroidal plasma. It is shown that turbulence self-organizes through the mechanism of spectral condensation. The spectral redistribution of the turbulent energy leads to the reduction in the turbulence level, generation of coherent flow, reduction in the particle diffusion and increase in the system's energy. The higher order state is sustained via the nonlocal spectral coupling of the linearly unstable spectral range to the large-scale mean flow. The similarity of self-organization in two-dimensional fluids and low-to-high confinement transitions in plasma suggests the universality of the mechanism.Comment: 5 pages, 4 figure

    Connecting speeds, directions and arrival times of 22 coronal mass ejections from the Sun to 1 AU

    Full text link
    Forecasting the in situ properties of coronal mass ejections (CMEs) from remote images is expected to strongly enhance predictions of space weather, and is of general interest for studying the interaction of CMEs with planetary environments. We study the feasibility of using a single heliospheric imager (HI) instrument, imaging the solar wind density from the Sun to 1 AU, for connecting remote images to in situ observations of CMEs. We compare the predictions of speed and arrival time for 22 CMEs (in 2008-2012) to the corresponding interplanetary coronal mass ejection (ICME) parameters at in situ observatories (STEREO PLASTIC/IMPACT, Wind SWE/MFI). The list consists of front- and backsided, slow and fast CMEs (up to 2700kms12700 \: km \: s^{-1}). We track the CMEs to 34.9±7.134.9 \pm 7.1 degrees elongation from the Sun with J-maps constructed using the SATPLOT tool, resulting in prediction lead times of 26.4±15.3-26.4 \pm 15.3 hours. The geometrical models we use assume different CME front shapes (Fixed-Φ\Phi, Harmonic Mean, Self-Similar Expansion), and constant CME speed and direction. We find no significant superiority in the predictive capability of any of the three methods. The absolute difference between predicted and observed ICME arrival times is 8.1±6.38.1 \pm 6.3 hours (rmsrms value of 10.9h). Speeds are consistent to within 284±288kms1284 \pm 288 \: km \: s^{-1}. Empirical corrections to the predictions enhance their performance for the arrival times to 6.1±5.06.1 \pm 5.0 hours (rmsrms value of 7.9h), and for the speeds to 53±50kms153 \pm 50 \: km \: s^{-1}. These results are important for Solar Orbiter and a space weather mission positioned away from the Sun-Earth line.Comment: 19 pages, 13 figures, accepted for publication in the Astrophysical Journa

    Experimental Limit on the Cosmic Diffuse Ultra-high Energy Neutrino Flux

    Full text link
    We report results from 120 hours of livetime with the Goldstone Lunar Ultra-high energy neutrino Experiment (GLUE). The experiment searches for <10 ns microwave pulses from the lunar regolith, appearing in coincidence at two large radio telescopes separated by 22 km and linked by optical fiber. Such pulses would arise from subsurface electromagnetic cascades induced by interactions of >= 100 EeV neutrinos in the lunar regolith. No candidates are yet seen, and the implied limits constrain several current models for ultra-high energy neutrino fluxes.Comment: 4 pages, 4 figures, revtex4 style. New intro section, Fig. 2, Fig 4; in final PRL revie

    Kinetic theory for non-equilibrium stationary states in long-range interacting systems

    Full text link
    We study long-range interacting systems perturbed by external stochastic forces. Unlike the case of short-range systems, where stochastic forces usually act locally on each particle, here we consider perturbations by external stochastic fields. The system reaches stationary states where external forces balance dissipation on average. These states do not respect detailed balance and support non-vanishing fluxes of conserved quantities. We generalize the kinetic theory of isolated long-range systems to describe the dynamics of this non-equilibrium problem. The kinetic equation that we obtain applies to plasmas, self-gravitating systems, and to a broad class of other systems. Our theoretical results hold for homogeneous states, but may also be generalized to apply to inhomogeneous states. We obtain an excellent agreement between our theoretical predictions and numerical simulations. We discuss possible applications to describe non-equilibrium phase transitions.Comment: 11 pages, 2 figures; v2: small changes, close to the published versio

    Observational Constraints on the Ultra-high Energy Cosmic Neutrino Flux from the Second Flight of the ANITA Experiment

    Get PDF
    The Antarctic Impulsive Transient Antenna (ANITA) completed its second long-duration balloon flight in January 2009, with 31 days aloft (28.5 live days) over Antarctica. ANITA searches for impulsive coherent radio Cherenkov emission from 200 to 1200 MHz, arising from the Askaryan charge excess in ultra-high energy neutrino-induced cascades within Antarctic ice. This flight included significant improvements over the first flight in the payload sensitivity, efficiency, and a flight trajectory over deeper ice. Analysis of in-flight calibration pulses from surface and sub-surface locations verifies the expected sensitivity. In a blind analysis, we find 2 surviving events on a background, mostly anthropogenic, of 0.97+-0.42 events. We set the strongest limit to date for 1-1000 EeV cosmic neutrinos, excluding several current cosmogenic neutrino models.Comment: 6 pages, 5 figures, submitted to Phys. Rev.

    Status of ANITA and ANITA-lite

    Full text link
    We describe a new experiment to search for neutrinos with energies above 3 x 10^18 eV based on the observation of short duration radio pulses that are emitted from neutrino-initiated cascades. The primary objective of the ANtarctic Impulse Transient Antenna (ANITA) mission is to measure the flux of Greisen-Zatsepin-Kuzmin (GZK) neutrinos and search for neutrinos from Active Galactic Nuclei (AGN). We present first results obtained from the successful launch of a 2-antenna prototype instrument (called ANITA-lite) that circled Antarctica for 18 days during the 03/04 Antarctic campaign and show preliminary results from attenuation length studies of electromagnetic waves at radio frequencies in Antarctic ice. The ANITA detector is funded by NASA, and the first flight is scheduled for December 2006.Comment: 9 pages, 8 figures, to be published in Proceedings of International School of Cosmic Ray Astrophysics, 14th Course: "Neutrinos and Explosive Events in the Universe", Erice, Italy, 2-13 July 200
    corecore