463 research outputs found

    The Effect Of Ni And Cu Catalysts On The Growth Of Graphene Under Different Ethanol Flow Rates Using Atmospheric Pressure Chemical Vapor Deposition

    Get PDF
    Graphene was grown on both nickel (Ni) and copper (Cu) catalysts by atmospheric pressure chemical vapor deposition (APCVD) technique at various ethanol flow rates. Raman spectroscopy and field emission scanning electron microscopy (FESEM) were used to study morphological and structural properties of APCVD grown graphene. The crystallite size, defect intensity, distance between defects and the graphene thickness were estimated based on Raman spectra analysis. For the same growth conditions, Ni catalyst promote the formation of more graphene layers as compare to Cu. This because of the higher carbon solubility in Ni as compared to Cu which leads to different growth mechanisms

    Unconventional Transcriptional Response to Environmental Enrichment in a Mouse Model of Rett Syndrome

    Get PDF
    Background: Rett syndrome (RTT) is an X-linked postnatal neurodevelopmental disorder caused by mutations in the gene encoding methyl-CpG binding protein 2 (MeCP2) and one of the leading causes of mental retardation in females. RTT is characterized by psychomotor retardation, purposeless hand movements, autistic-like behavior and abnormal gait. We studied the effects of environmental enrichment (EE) on the phenotypic manifestations of a RTT mouse model that lacks MeCP2 (Mecp2 2/y). Principal Findings: We found that EE delayed and attenuated some neurological alterations presented by Mecp2 2/y mice and prevented the development of motor discoordination and anxiety-related abnormalities. To define the molecular correlate of this beneficial effect of EE, we analyzed the expression of several synaptic marker genes whose expression is increased by EE in several mouse models. Conclusions/Significance: We found that EE induced downregulation of several synaptic markers, suggesting that th

    Optimisation of Cooking Time for Two Varieties of Foodstuffs using Single- and Double-Cavity Cooking Pots

    Get PDF
    The increase in the shortage of firewood due to deforestation, skyrocketing of electricity tariffs and fuel pump prices in recent times have propelled scientists to search for alternative measures of cooking that can reduce electric energy and fuel consumption. Double-cavity cooking pots have emerged in recent times to reduce the prolonged duration arising from the sequential cooking of different foodstuffs/ dishes using a single-cavity pot. However, experimental reports are rarely available to sensitise users about the advantages of using the double-cavity pot. The present work describes a simple and informative experimental report that compares the cooking time for two varieties of foodstuffs (rice and beans) using single- and double-cavity pots. It was found that the average time rate of cooking in the double-cavity pot was 1.33 ◦ C/min less than in the single-cavity pot. The total time taken to concurrently cook equal masses of rice and beans in separate cavities of the double-cavity pot was found to be 9.98 min less than that of the single-cavity pot. The double-cavity pot proved to be economically viable by reducing the cooking time, electric energy, and fuel consumption that arise from the successional cooking of a variety of foodstuffs using the single-cavity pot

    Isogenic Pairs of Wild Type and Mutant Induced Pluripotent Stem Cell (iPSC) Lines from Rett Syndrome Patients as In Vitro Disease Model

    Get PDF
    Rett syndrome (RTT) is an autism spectrum developmental disorder caused by mutations in the X-linked methyl-CpG binding protein 2 (MECP2) gene. Excellent RTT mouse models have been created to study the disease mechanisms, leading to many important findings with potential therapeutic implications. These include the identification of many MeCP2 target genes, better understanding of the neurobiological consequences of the loss- or mis-function of MeCP2, and drug testing in RTT mice and clinical trials in human RTT patients. However, because of potential differences in the underlying biology between humans and common research animals, there is a need to establish cell culture-based human models for studying disease mechanisms to validate and expand the knowledge acquired in animal models. Taking advantage of the nonrandom pattern of X chromosome inactivation in female induced pluripotent stem cells (iPSC), we have generated isogenic pairs of wild type and mutant iPSC lines from several female RTT patients with common and rare RTT mutations. R294X (arginine 294 to stop codon) is a common mutation carried by 5–6% of RTT patients. iPSCs carrying the R294X mutation has not been studied. We differentiated three R294X iPSC lines and their isogenic wild type control iPSC into neurons with high efficiency and consistency, and observed characteristic RTT pathology in R294X neurons. These isogenic iPSC lines provide unique resources to the RTT research community for studying disease pathology, screening for novel drugs, and testing toxicology

    Role of MeCP2, DNA methylation, and HDACs in regulating synapse function

    Get PDF
    Over the past several years there has been intense effort to delineate the role of epigenetic factors, including methyl-CpG-binding protein 2, histone deacetylases, and DNA methyltransferases, in synaptic function. Studies from our group as well as others have shown that these key epigenetic mechanisms are critical regulators of synapse formation, maturation, as well as function. Although most studies have identified selective deficits in excitatory neurotransmission, the latest work has also uncovered deficits in inhibitory neurotransmission as well. Despite the rapid pace of advances, the exact synaptic mechanisms and gene targets that mediate these effects on neurotransmission remain unclear. Nevertheless, these findings not only open new avenues for understanding neuronal circuit abnormalities associated with neurodevelopmental disorders but also elucidate potential targets for addressing the pathophysiology of several intractable neuropsychiatric disorders

    MECP2 Isoform-Specific Vectors with Regulated Expression for Rett Syndrome Gene Therapy

    Get PDF
    BACKGROUND:Rett Syndrome (RTT) is an Autism Spectrum Disorder and the leading cause of mental retardation in females. RTT is caused by mutations in the Methyl CpG-Binding Protein-2 (MECP2) gene and has no treatment. Our objective is to develop viral vectors for MECP2 gene transfer into Neural Stem Cells (NSC) and neurons suitable for gene therapy of Rett Syndrome. METHODOLOGY/PRINCIPAL FINDINGS:We generated self-inactivating (SIN) retroviral vectors with the ubiquitous EF1alpha promoter avoiding known silencer elements to escape stem-cell-specific viral silencing. High efficiency NSC infection resulted in long-term EGFP expression in transduced NSC and after differentiation into neurons. Infection with Myc-tagged MECP2-isoform-specific (E1 and E2) vectors directed MeCP2 to heterochromatin of transduced NSC and neurons. In contrast, vectors with an internal mouse Mecp2 promoter (MeP) directed restricted expression only in neurons and glia and not NSC, recapitulating the endogenous expression pattern required to avoid detrimental consequences of MECP2 ectopic expression. In differentiated NSC from adult heterozygous Mecp2(tm1.1Bird)+/- female mice, 48% of neurons expressed endogenous MeCP2 due to random inactivation of the X-linked Mecp2 gene. Retroviral MECP2 transduction with EF1alpha and MeP vectors rescued expression in 95-100% of neurons resulting in increased dendrite branching function in vitro. Insulated MECP2 isoform-specific lentiviral vectors show long-term expression in NSC and their differentiated neuronal progeny, and directly infect dissociated murine cortical neurons with high efficiency. CONCLUSIONS/SIGNIFICANCE:MeP vectors recapitulate the endogenous expression pattern of MeCP2 in neurons and glia. They have utility to study MeCP2 isoform-specific functions in vitro, and are effective gene therapy vectors for rescuing dendritic maturation of neurons in an ex vivo model of RTT

    Cell-Autonomous Alterations in Dendritic Arbor Morphology and Connectivity Induced by Overexpression of MeCP2 in Xenopus Central Neurons In Vivo

    Get PDF
    Methyl CpG binding protein-2 (MeCP2) is an essential epigenetic regulator in human brain development. Mutations in the MeCP2 gene have been linked to Rett syndrome, a severe X-linked progressive neurodevelopmental disorder, and one of the most common causes of mental retardation in females. MeCP2 duplication and triplication have also been found to affect brain development, indicating that both loss of function and gain in MeCP2 dosage lead to similar neurological phenotypes. Here, we used the Xenopus laevis visual system as an in vivo model to examine the consequence of increased MeCP2 expression during the morphological maturation of individual central neurons in an otherwise intact brain. Single-cell overexpression of wild-type human MeCP2 was combined with time-lapse confocal microscopy imaging to study dynamic mechanisms by which MeCP2 influences tectal neuron dendritic arborization. Analysis of neurons co-expressing DsRed2 demonstrates that MeCP2 overexpression specifically interfered with dendritic elaboration, decreasing the rates of branch addition and elimination over a 48 hour observation period. Moreover, dynamic analysis of neurons co-expressing wt-hMeCP2 and PSD95-GFP revealed that even though neurons expressing wt-hMeCP2 possessed significantly fewer dendrites and simpler morphologies than control neurons at the same developmental stage, postsynaptic site density in wt-hMeCP2-expressing neurons was similar to controls and increased at a rate higher than controls. Together, our in vivo studies support an early, cell-autonomous role for MeCP2 during the morphological differentiation of neurons and indicate that perturbations in MeCP2 gene dosage result in deficits in dendritic arborization that can be compensated, at least in part, by synaptic connectivity changes

    Co-Localization of the Oncogenic Transcription Factor MYCN and the DNA Methyl Binding Protein MeCP2 at Genomic Sites in Neuroblastoma

    Get PDF
    MYCN is a transcription factor that is expressed during the development of the neural crest and its dysregulation plays a major role in the pathogenesis of pediatric cancers such as neuroblastoma, medulloblastoma and rhabdomyosarcoma. MeCP2 is a CpG methyl binding protein which has been associated with a number of cancers and developmental disorders, particularly Rett syndrome.Using an integrative global genomics approach involving chromatin immunoprecipitation applied to microarrays, we have determined that MYCN and MeCP2 co-localize to gene promoter regions, as well as inter/intragenic sites, within the neuroblastoma genome (MYCN amplified Kelly cells) at high frequency (70.2% of MYCN sites were also positive for MeCP2). Intriguingly, the frequency of co-localization was significantly less at promoter regions exhibiting substantial hypermethylation (8.7%), as determined by methylated DNA immunoprecipitation (MeDIP) applied to the same microarrays. Co-immunoprecipitation of MYCN using an anti-MeCP2 antibody indicated that a MYCN/MeCP2 interaction occurs at protein level. mRNA expression profiling revealed that the median expression of genes with promoters bound by MYCN was significantly higher than for genes bound by MeCP2, and that genes bound by both proteins had intermediate expression. Pathway analysis was carried out for genes bound by MYCN, MeCP2 or MYCN/MeCP2, revealing higher order functions.Our results indicate that MYCN and MeCP2 protein interact and co-localize to similar genomic sites at very high frequency, and that the patterns of binding of these proteins can be associated with significant differences in transcriptional activity. Although it is not yet known if this interaction contributes to neuroblastoma disease pathogenesis, it is intriguing that the interaction occurs at the promoter regions of several genes important for the development of neuroblastoma, including ALK, AURKA and BDNF

    Biogenic amines and their metabolites are differentially affected in the Mecp2-deficient mouse brain

    Get PDF
    International audienceBACKGROUND: Rett syndrome (RTT, MIM #312750) is a severe neurological disorder caused by mutations in the X-linked methyl-CpG binding protein 2 (MECP2) gene. Female patients are affected with an incidence of 1/15000 live births and develop normally from birth to 6-18 months of age before the onset of deficits in autonomic, cognitive, motor functions (stereotypic hand movements, impaired locomotion) and autistic features. Studies on Mecp2 mouse models, and specifically null mice, revealed morphological and functional alterations of neurons. Several functions that are regulated by bioaminergic nuclei or peripheral ganglia are impaired in the absence of Mecp2. RESULTS: Using high performance liquid chromatography, combined with electrochemical detection (HPLC/EC) we found that Mecp2(-/y) mice exhibit an alteration of DA metabolism in the ponto-bulbar region at 5 weeks followed by a more global alteration of monoamines when the disease progresses (8 weeks). Hypothalamic measurements suggest biphasic disturbances of norepinephrine and serotonin at pathology onset (5 weeks) that were found stabilized later on (8 weeks). Interestingly, the postnatal nigrostriatal dopaminergic deficit identified previously does not parallel the reduction of the other neurotransmitters investigated. Finally, dosage in cortical samples do not suggest modification in the monoaminergic content respectively at 5 and 8 weeks of age. CONCLUSIONS: We have identified that the level of catecholamines and serotonin is differentially affected in Mecp2(-/y) brain areas in a time-dependent fashion
    corecore