3,400 research outputs found

    Hybrid dialog: Dialogic learning in large lecture classes

    Full text link
    Attendance at classical lectures usually leads to rather poor learning success. A wide variety of studies show that while lectures are as effective as any other method for transmitting information, they are inferior in many other dimensions. Lectures are not as effective as discussion methods in promoting thought and they are ineffective at teaching behavioral skills and subject-related values as well as at awakening interest in a subject. Still ex-cathedra teaching is a favored way to cope with a high student-to-teacher ratio. To solve this conflict between organizational and pedagogical requirements, a group of researchers at the Institute of Teacher Education at the University of Zurich has developed a hybrid course setting using an online learning platform. Their setting incorporates a dialog among students within a large lecture class. Furthermore a feedback loop enables the lecturer to continuously adjust the content of the lecture to the learning process of the students. In this article, the authors first present the structure of this setting and then illustrate how to implement it by the web-based open source learning management system OLAT (Online Learning and Training). Based on their research, they focus on key components for the success of their hybrid dialog. They show how individual and group learning can be fostered with corresponding assignments, assessments, and assigned roles such as moderators. Thus, the authors will define their position that the challenge of a large lecture class can be met while successfully implementing social learning and process-oriented assessments of academic achievement

    Upper Limit on the molecular resonance strengths in the 12{}^{12}C+12{}^{12}C fusion reaction

    Full text link
    Carbon burning is a crucial process for a number of important astrophysical scenarios. The lowest measured energy is around Ec.m._{\rm c.m.}=2.1 MeV, only partially overlapping with the energy range of astrophysical interest. The currently adopted reaction rates are based on an extrapolation which is highly uncertain because of potential resonances existing in the unmeasured energy range and the complication of the effective nuclear potential. By comparing the cross sections of the three carbon isotope fusion reactions, 12{}^{12}C+12{}^{12}C, 12{}^{12}C+13{}^{13}C and 13{}^{13}C+13{}^{13}C, we have established an upper limit on the molecular resonance strengths in 12{}^{12}C+12{}^{12}C fusion reaction. The preliminary results are presented and the impact on nuclear astrophysics is discussed.Comment: 4 pages, 3 figures, FUSION11 conference proceedin

    Quantized gravitational waves in the Milne universe

    Get PDF
    The quantization of gravitational waves in the Milne universe is discussed. The relation between positive frequency functions of the gravitational waves in the Milne universe and those in the Minkowski universe is clarified. Implications to the one-bubble open inflation scenario are also discussed.Comment: 26 pages, 1 figure, revtex. submitted to Phys. Rev. D1

    Optical study of the electronic phase transition of strongly correlated YbInCu_4

    Full text link
    Infrared, visible and near-UV reflectivity measurements are used to obtain conductivity as a function of temperature and frequency in YbInCu_4, which exhibits an isostructural phase-transition into a mixed-valent phase below T_v=42 K. In addition to a gradual loss of spectral weight with decreasing temperature extending up to 1.5 eV, a sharp resonance appears at 0.25 eV in the mixed-valent phase. This feature can be described in terms of excitations into the Kondo (Abrikosov-Suhl) resonance, and, like the sudden reduction of resistivity, provides a direct reflection of the onset of coherence in this strongly correlated electron system.Comment: 4 pages, 3 figures (to appear in Phys. Rev. B

    Primordial Gravitational Waves From Open Inflation

    Get PDF
    We calculate the spectrum of gravitational waves generated during inflation in open (Ω0<1)(\Omega _0<1) inflationary models. In such models an initial epoch of old inflation solves the horizon and flatness problems, and during this first epoch of inflation the quantum state of the graviton field rapidly approaches the Bunch-Davies vacuum. Then old inflation ends by the nucleation of a single bubble, inside of which there is a shortened epoch of slow-roll inflation giving Ω0<1\Omega _0<1 today. In this paper we re-express the Bunch-Davies vacuum for the graviton field in terms of the hyperbolic modes inside the bubble and propagate these modes forward in time into the present era. We derive the expression for the contribution from these gravity waves to the cosmic microwave background anisotropy including the effect of a finite energy difference across the bubble wall.Comment: 40 pages, TEX with phyzzx macro, 5 figure

    Thermo-mechanical behaviour of a compacted swelling clay

    Get PDF
    Compacted unsaturated swelling clay is often considered as a possible buffer material for deep nuclear waste disposal. An isotropic cell permitting simultaneous control of suction, temperature and pressure was used to study the thermo-mechanical behaviour of this clay. Tests were performed at total suctions ranging from 9 to 110 MPa, temperature from 25 to 80 degrees C, isotropic pressure from 0.1 to 60 MPa. It was observed that heating at constant suction and pressure induces either swelling or contraction. The results from compression tests at constant suction and temperature evidenced that at lower suction, the yield pressure was lower, the elastic compressibility parameter and the plastic compressibility parameter were higher. On the other hand, at a similar suction, the yield pressure was slightly influenced by the temperature; and the compressibility parameters were insensitive to temperature changes. The thermal hardening phenomenon was equally evidenced by following a thermo-mechanical path of loading-heating-cooling-reloading

    Cosmological Perturbations Generated in the Colliding Bubble Braneworld Universe

    Full text link
    We compute the cosmological perturbations generated in the colliding bubble braneworld universe in which bubbles filled with five-dimensional anti-de Sitter space (AdS5)expanding within a five dimensional de Sitter space (dS5) or Minkowski space (M5) collide to form a (3+1) dimensional local brane on which the cosmology is virtually identical to that of the Randall-Sundrum model. The perturbation calculation presented here is valid to linear order but treats the fluctuations of the expanding bubbles as (3+1) dimensional fields localized on the bubble wall. We find that for bubbles expanding in dS5 the dominant contribution to the power spectrum is `red' but very small except in certain cases where the fifth dimension is not large or the bubbles have expanded to far beyond the dS5 apparent horizon length. This paper supersedes a previous version titled "Exactly Scale-Invariant Cosmological Perturbations From a Colliding Bubble Braneworld Universe" in which we erroneously claimed that a scale-invariant spectrum results for the case of bubbles expanding in M5. This present paper corrects the errors of the previous version and extends the analysis to the more interesting and general case of bubbles expanding in dS5.Comment: 29 pages Latex with eps figures. Major errors in the original version of the paper corrected and analysis extended to bubbles expanding in dS

    Braneworld Flux Inflation

    Get PDF
    We propose a geometrical model of brane inflation where inflation is driven by the flux generated by opposing brane charges and terminated by the collision of the branes, with charge annihilation. We assume the collision process is completely inelastic and the kinetic energy is transformed into the thermal energy after collision. Thereafter the two branes coalesce together and behave as a single brane universe with zero effective cosmological constant. In the Einstein frame, the 4-dimensional effective theory changes abruptly at the collision point. Therefore, our inflationary model is necessarily 5-dimensional in nature. As the collision process has no singularity in 5-dimensional gravity, we can follow the evolution of fluctuations during the whole history of the universe. It turns out that the radion field fluctuations have a steeply tilted, red spectrum, while the primordial gravitational waves have a flat spectrum. Instead, primordial density perturbations could be generated by a curvaton mechanism.Comment: 11 pages, 6 figures, references adde

    Reconstructing the primordial power spectrum from the CMB

    Full text link
    We propose a straightforward and model independent methodology for characterizing the sensitivity of CMB and other experiments to wiggles, irregularities, and features in the primordial power spectrum. Assuming that the primordial cosmological perturbations are adiabatic, we present a function space generalization of the usual Fisher matrix formalism, applied to a CMB experiment resembling Planck with and without ancillary data. This work is closely related to other work on recovering the inflationary potential and exploring specific models of non-minimal, or perhaps baroque, primordial power spectra. The approach adopted here, however, most directly expresses what the data is really telling us. We explore in detail the structure of the available information and quantify exactly what features can be reconstructed and at what statistical significance.Comment: 43 pages Revtex, 23 figure

    Non-Gaussianity from Inflation

    Get PDF
    Correlated adiabatic and isocurvature perturbation modes are produced during inflation through an oscillation mechanism when extra scalar degrees of freedom other than the inflaton field are present. We show that this correlation generically leads to sizeable non-Gaussian features both in the adiabatic and isocurvature perturbations. The non-Gaussianity is first generated by large non-linearities in some scalar sector and then efficiently transferred to the inflaton sector by the oscillation process. We compute the cosmic microwave background angular bispectrum, providing a characteristic feature of such inflationary non-Gaussianity,which might be detected by upcoming satellite experiments.Comment: Revised version accepted for publication in Phys. Rev. D. 19 pages, LaTeX fil
    • …
    corecore