287 research outputs found
Recommended from our members
Laser Sintering of Stainless Steel using Resin Powder
We tried laser sintering of 316L stainless steel powder using resin powder. The laser
sintering conditions such as laser power, scan speed and scan pitch with a YAG laser, and the
influence of additional resin powder on the density and the tensile properties of the sintered alloy
were investigated experimentally. The tensile specimen was laser-sintered with a YAG laser, and
then debound and sintered in a vacuum furnace. The tensile specimen was successfully fabricated.
The relative density and the tensile strength varied with the additional resin powder, and the
optimum weight percentage of additional resin powder was around 4%.The relative density of the
sintered alloy was approximately 85%, and the tensile strength and elongation of the sintered
alloy were more than 280 MPa and 15% respectively.Mechanical Engineerin
Recommended from our members
Surface Morphology of Selective Laser-Melted Titanium
The surface morphology of biomaterials is one of the most important biocompatibility
factors. In this paper, the change in surface morphology of selective laser-melted titanium with
process parameters was investigated to control the pore structure and mesh size. First, the process
map which shows the relation between the morphology of laser-melted track and the process
parameters such as laser power and scan speed was drawn by experiments. The laser-melted layer
was fabricated on the basis of the process map. As a result, the surface morphology, especially
pore structure and mesh size, of the layer is affected strongly by energy density as well as scan
spacing.Mechanical Engineerin
Recommended from our members
LAYER-WISE IN-PROCESS MONITORING-AND-FEEDBACK SYSTEM BASED ON SURFACE CHARACTERISTICS EVALUATED BY MACHINE-LEARNING-GENERATED CRITERIA
In the laser powder bed fusion (PBF-LB) process, a set of parameters that are considered optimal are
selected. Still, a set of parameters cannot accommodate complex model geometries, model placement in the
build chamber, and unforeseen circumstances, leading to internal defects. Therefore, a new in-situ monitoring
and feedback system has been developed to suppress the occurrence of lack-of-fusion (LOF) defects in the PBF-LB process. This system measures surface properties after each laser irradiation to predict whether LOF defects
occur. Then, if necessary, a feedback process is performed to re-melt the same surface. Evaluation thresholds
are defined by a combination of aerial surface texture parameters created in advance by machine learning of
surface properties and defect occurrence. For example, a square pillar of Inconel 718 alloy built with feedback
had a higher relative density than one without feedback.Mechanical Engineerin
Cardiac-Specific SOCS3 Deletion Prevents In Vivo Myocardial Ischemia Reperfusion Injury through Sustained Activation of Cardioprotective Signaling Molecules.
Myocardial ischemia reperfusion injury (IRI) adversely affects cardiac performance and the prognosis of patients with acute myocardial infarction. Although myocardial signal transducer and activator of transcription (STAT) 3 is potently cardioprotective during IRI, the inhibitory mechanism responsible for its activation is largely unknown. The present study aimed to investigate the role of the myocardial suppressor of cytokine signaling (SOCS)-3, an intrinsic negative feedback regulator of the Janus kinase (JAK)-STAT signaling pathway, in the development of myocardial IRI. Myocardial IRI was induced in mice by ligating the left anterior descending coronary artery for 1 h, followed by different reperfusion times. One hour after reperfusion, the rapid expression of JAK-STAT-activating cytokines was observed. We precisely evaluated the phosphorylation of cardioprotective signaling molecules and the expression of SOCS3 during IRI and then induced myocardial IRI in wild-type and cardiac-specific SOCS3 knockout mice (SOCS3-CKO). The activation of STAT3, AKT, and ERK1/2 rapidly peaked and promptly decreased during IRI. This decrease correlated with the induction of SOCS3 expression up to 24 h after IRI in wild-type mice. The infarct size 24 h after reperfusion was significantly reduced in SOCS3-CKO compared with wild-type mice. In SOCS3-CKO mice, STAT3, AKT, and ERK1/2 phosphorylation was sustained, myocardial apoptosis was prevented, and the expression of anti-apoptotic Bcl-2 family member myeloid cell leukemia-1 (Mcl-1) was augmented. Cardiac-specific SOCS3 deletion led to the sustained activation of cardioprotective signaling molecules including and prevented myocardial apoptosis and injury during IRI. Our findings suggest that SOCS3 may represent a key factor that exacerbates the development of myocardial IRI
Copy number, linkage disequilibrium and disease association in the FCGR locus.
The response of a leukocyte to immune complexes (ICs) is modulated by receptors for the Fc region of IgG (FcgammaRs), and alterations in their affinity or function have been associated with risk of autoimmune diseases, including systemic lupus erythematosus (SLE). The low-affinity FcgammaR genomic locus is complex, containing regions of copy number variation (CNV) which can alter receptor expression and leukocyte responses to IgG. Combined paralogue ratio tests (PRTs) were used to distinguish three intervals within the FCGR locus which undergo CNV, and to determine FCGR gene copy number (CN). There were significant differences in FCGR3B and FCGR3A CNV profiles between Caucasian, East Asian and Kenyan populations. A previously noted association of low FCGR3B CN with SLE in Caucasians was supported [OR = 1.57 (1.08-2.27), P = 0.018], and replicated in Chinese [OR = 1.65 (1.25-2.18), P = 4 x 10(-4)]. There was no association of FCGR3B CNV with vasculitis, nor with malarial or bacterial infection. Linkage disequilibrium (LD) between multi-allelic FCGR3B CNV and SLE-associated SNPs in the FCGR locus was defined for the first time. Despite LD between FCGR3B CNV and a variant in FcgammaRIIB (I232T) which abolishes inhibitory function, both reduced CN of FCGR3B and homozygosity of the FcgammaRIIB-232T allele were individually strongly associated with SLE risk. Thus CN of FCGR3B, which controls IC responses and uptake by neutrophils, and variations in FCGR2B, which controls factors such as antibody production and macrophage activation, are important in SLE pathogenesis. Further interpretations of contributions to pathogenesis by FcgammaRs must be made in the context of LD involving CNV regions
Genetic Evidence for the Association between the Early Growth Response 3 (EGR3) Gene and Schizophrenia
Recently, two genome scan meta-analysis studies have found strong evidence for the association of loci on chromosome 8p with schizophrenia. The early growth response 3 (EGR3) gene located in chromosome 8p21.3 was also found to be involved in the etiology of schizophrenia. However, subsequent studies failed to replicate this finding. To investigate the genetic role of EGR3 in Chinese patients, we genotyped four SNPs (average interval ∼2.3 kb) in the chromosome region of EGR3 in 470 Chinese schizophrenia patients and 480 healthy control subjects. The SNP rs35201266 (located in intron 1 of EGR3) showed significant differences between cases and controls in both genotype frequency distribution (P = 0.016) and allele frequency distribution (P = 0.009). Analysis of the haplotype rs35201266-rs3750192 provided significant evidence for association with schizophrenia (P = 0.0012); a significant difference was found for the common haplotype AG (P = 0.0005). Furthermore, significant associations were also found in several other two-, and three-SNP tests of haplotype analyses. The meta-analysis revealed a statistically significant association between rs35201266 and schizophrenia (P = 0.0001). In summary, our study supports the association of EGR3 with schizophrenia in our Han Chinese sample, and further functional exploration of the EGR3 gene will contribute to the molecular basis for the complex network underlying schizophrenia pathogenesis
- …