311 research outputs found

    Fabrication of high quality ferromagnetic Josephson junctions

    Full text link
    We present ferromagnetic Nb/Al2O3/Ni60Cu40/Nb Josephson junctions (SIFS) with an ultrathin Al2O3 tunnel barrier. The junction fabrication was optimized regarding junction insulation and homogeneity of current transport. Using ion-beam-etching and anodic oxidation we defined and insulated the junction mesas. The additional 2 nm thin Cu layer below the ferromagnetic NiCu (SINFS) lowered interface roughness and ensured very homogeneous current transport. A high yield of junctional devices with jc spreads less than 2% was obtained.Comment: 5 pages, 6 figures; VORTEX IV conference contribution; Submitted to Physica

    High quality ferromagnetic 0 and pi Josephson tunnel junctions

    Get PDF
    We fabricated high quality \Nb/\Al_2\O_3/\Ni_{0.6}\Cu_{0.4}/\Nb superconductor-insulator-ferromagnet-superconductor Josephson tunnel junctions. Depending on the thickness of the ferromagnetic \Ni_{0.6}\Cu_{0.4} layer and on the ambient temperature, the junctions were in the 0 or π\pi ground state. All junctions have homogeneous interfaces showing almost perfect Fraunhofer patterns. The \Al_2\O_3 tunnel barrier allows to achieve rather low damping, which is desired for many experiments especially in the quantum domain. The McCumber parameter βc\beta_c increases exponentially with decreasing temperature and reaches βc≈700\beta_c\approx700 at T=2.1KT=2.1 {\rm K}. The critical current density in the π\pi state was up to 5 A/cm25\:\rm{A/cm^2} at T=2.1KT=2.1 {\rm K}, resulting in a Josephson penetration depth λJ\lambda_J as low as 160 μm160\:\rm{\mu m}. Experimentally determined junction parameters are well described by theory taking into account spin-flip scattering in the \Ni_{0.6}\Cu_{0.4} layer and different transparencies of the interfaces.Comment: Changed content and Corrected typo

    A comparative evaluation of different models and brands of direct ophthalmoscopes and retinoscopes

    Get PDF
    The purpose of this study was to compare the various ophthalmoscopes and streak retinoscopes currently available on the U.S. market. Subjective and objective tests were utilized to assess overall performance. Each instrument tested received a sub score based on performance in each of several subjective categories which were then combined to arrive at a total score. The instruments were then ranked from highest overall score to the lowest. The Keeler Vista 20 was the highest rated ophthalmoscope largely due to excellent optical clarity. The Vista was followed by the Keeler Specialist, Propper MMI, Neitz BX alpha, Welch Allyn 11730, Visuscope, Ri-Scope and Heine Autofoc 2. Of the pocket ophthalmoscopes tested the Keeler rated first again, followed by Neitz, Welch Allyn, Propper and Maylite. Streak retinoscopes evaluation placed the Neitz on top with the Welch Allyn prototype, Propper and Keeler units placing second, third and fourth

    Far-from-equilibrium Ostwald ripening in electrostatically driven granular powders

    Full text link
    We report the first experimental study of cluster size distributions in electrostatically driven granular submonolayers. The cluster size distribution in this far-from-equilibrium process exhibits dynamic scaling behavior characteristic of the (nearly equilibrium) Ostwald ripening, controlled by the attachment and detachment of the "gas" particles. The scaled size distribution, however, is different from the classical Wagner distribution obtained in the limit of a vanishingly small area fraction of the clusters. A much better agreement is found with the theory of Conti et al. [Phys. Rev. E 65, 046117 (2002)] which accounts for the cluster merger.Comment: 5 pages, to appear in PR

    Velocity Distributions of Granular Gases with Drag and with Long-Range Interactions

    Full text link
    We study velocity statistics of electrostatically driven granular gases. For two different experiments: (i) non-magnetic particles in a viscous fluid and (ii) magnetic particles in air, the velocity distribution is non-Maxwellian, and its high-energy tail is exponential, P(v) ~ exp(-|v|). This behavior is consistent with kinetic theory of driven dissipative particles. For particles immersed in a fluid, viscous damping is responsible for the exponential tail, while for magnetic particles, long-range interactions cause the exponential tail. We conclude that velocity statistics of dissipative gases are sensitive to the fluid environment and to the form of the particle interaction.Comment: 4 pages, 3 figure

    Characterization of Anti-Cancer Activities of Violacein: Actions on Tumor Cells and the Tumor Microenvironment

    Get PDF
    Natural products have been shown to serve as promising starting points for novel anti cancer drugs. In this study, the anti-cancer activities of the purple compound violacein, initially isolated from Chromobacterium violaceum, were investigated. To highlight the crucial role of the tumor microenvironment on the effectiveness of cancer therapies, this study includes effects on macrophages as prototypic cells of the microenvironment in addition to the investigation of tumor-centric activities. Using 2D and 3D cell culture models, automated live-cell microscopy, and biochemical analyses, violacein was demonstrated to inhibit tumor cell proliferation and migration. The violacein-triggered tumor cell death was further associated with caspase 3-like activation and ATP release. Stimuli released from dead cells resulted in inflammatory activation of macrophages, as shown by NF-kB reporter cell assays, macrophage morphology, and gene expression analysis. Moreover, macrophages deficient in the inflammasome component Nlrp3 were found to be significantly less sensitive towards treatment with violacein and doxorubicin. Taken together, this study provides new insights into the biological activity of violacein against cancer. In addition, the in vitro data suggest immunogenic features of induced cell death, making violacein an interesting candidate for further studies investigating the compound as an inducer of immunogenic cell death

    Contextual Flexibility in Pseudomonas aeruginosa Central Carbon Metabolism during Growth in Single Carbon Sources.

    Get PDF
    Pseudomonas aeruginosa is an opportunistic human pathogen, particularly noted for causing infections in the lungs of people with cystic fibrosis (CF). Previous studies have shown that the gene expression profile of P. aeruginosa appears to converge toward a common metabolic program as the organism adapts to the CF airway environment. However, we still have only a limited understanding of how these transcriptional changes impact metabolic flux at the systems level. To address this, we analyzed the transcriptome, proteome, and fluxome of P. aeruginosa grown on glycerol or acetate. These carbon sources were chosen because they are the primary breakdown products of an airway surfactant, phosphatidylcholine, which is known to be a major carbon source for P. aeruginosa in CF airways. We show that the fluxes of carbon throughout central metabolism are radically different among carbon sources. For example, the newly recognized "EDEMP cycle" (which incorporates elements of the Entner-Doudoroff [ED] pathway, the Embden-Meyerhof-Parnas [EMP] pathway, and the pentose phosphate [PP] pathway) plays an important role in supplying NADPH during growth on glycerol. In contrast, the EDEMP cycle is attenuated during growth on acetate, and instead, NADPH is primarily supplied by the reaction catalyzed by isocitrate dehydrogenase(s). Perhaps more importantly, our proteomic and transcriptomic analyses revealed a global remodeling of gene expression during growth on the different carbon sources, with unanticipated impacts on aerobic denitrification, electron transport chain architecture, and the redox economy of the cell. Collectively, these data highlight the remarkable metabolic plasticity of P. aeruginosa; that plasticity allows the organism to seamlessly segue between different carbon sources, maximizing the energetic yield from each.IMPORTANCE Pseudomonas aeruginosa is an opportunistic human pathogen that is well known for causing infections in the airways of people with cystic fibrosis. Although it is clear that P. aeruginosa is metabolically well adapted to life in the CF lung, little is currently known about how the organism metabolizes the nutrients available in the airways. In this work, we used a combination of gene expression and isotope tracer ("fluxomic") analyses to find out exactly where the input carbon goes during growth on two CF-relevant carbon sources, acetate and glycerol (derived from the breakdown of lung surfactant). We found that carbon is routed ("fluxed") through very different pathways during growth on these substrates and that this is accompanied by an unexpected remodeling of the cell's electron transfer pathways. Having access to this "blueprint" is important because the metabolism of P. aeruginosa is increasingly being recognized as a target for the development of much-needed antimicrobial agents

    High-efficiency production of the antimicrobial peptide pediocin PA-1 in metabolically engineered Corynebacterium glutamicum using a microaerobic process at acidic pH and elevated levels of bivalent calcium ions

    Get PDF
    Background Pediocin PA-1 is a bacteriocin of recognized value with applications in food bio-preservation and the medical sector for the prevention of infection. To date, industrial manufacturing of pediocin PA-1 is limited by high cost and low-performance. The recent establishment of the biotechnological workhorse Corynebacterium glutamicum as recombinant host for pediocin PA-1 synthesis displays a promising starting point towards more efcient production. Results Here, we optimized the fermentative production process. Following successful simplifcation of the production medium, we carefully investigated the impact of dissolved oxygen, pH value, and the presence of bivalent calcium ions on pediocin production. It turned out that the formation of the peptide was strongly supported by an acidic pH of 5.7 and microaerobic conditions at a dissolved oxygen level of 2.5%. Furthermore, elevated levels of CaCl2 boosted production. The IPTG-inducible producer C. glutamicum CR099 pXMJ19 Ptac pedACDCg provided 66 mg L−1 of pediocin PA-1 in a two-phase batch process using the optimized set-up. In addition, the novel constitutive strain Ptuf pedACDCg allowed successful production without the need for IPTG. Conclusions The achieved pediocin titer surpasses previous eforts in various microbes up to almost seven-fold, providing a valuable step to further explore and develop this important bacteriocin. In addition to its high biosynthetic performance C. glutamicum proved to be highly robust under the demanding producing conditions, suggesting its further use as host for bacteriocin production
    • …
    corecore