101 research outputs found

    Historical and statistical data on the development of the domestic alcoholic beverages industry

    Get PDF
    The method of historical and statistical data analysis makes it possible to identify development and characteristic patterns, both temporary and permanent, production criteria for various branches of the food industry. The application of this method made it possible to trace formation of the alcohol industry inRussiaand identify critical historical events that influenced its development. The article presents and analyzes statistical data on the production of the main types of alcoholic beverages industry since 1913

    A thermodynamic unification of jamming

    Full text link
    Fragile materials ranging from sand to fire-retardant to toothpaste are able to exhibit both solid and fluid-like properties across the jamming transition. Unlike ordinary fusion, systems of grains, foams and colloids jam and cease to flow under conditions that still remain unknown. Here we quantify jamming via a thermodynamic approach by accounting for the structural ageing and the shear-induced compressibility of dry sand. Specifically, the jamming threshold is defined using a non-thermal temperature that measures the 'fluffiness' of a granular mixture. The thermodynamic model, casted in terms of pressure, temperature and free-volume, also successfully predicts the entropic data of five molecular glasses. Notably, the predicted configurational entropy avoids the Kauzmann paradox entirely. Without any free parameters, the proposed equation-of-state also governs the mechanism of shear-banding and the associated features of shear-softening and thickness-invariance.Comment: 16 pgs double spaced. 4 figure

    Universality class of the critical point in the restricted primitive model of ionic systems

    Full text link
    A coarse-grained description of the restricted primitive model is considered in terms of the local charge- and number-density fields. Exact reduction to a one-field theory is derived, and exact expressions for the number-density correlation functions in terms of higher-order correlation functions for the charge-density are given. It is shown that in continuum space the singularity of the charge-density correlation function associated with short-wavelength charge-ordering disappears when charge-density fluctuations are included by following the Brazovskii approach. The related singularity of the individual Feynman diagrams contributing to the number-density correlation functions is cured when all the diagrams are segregated ito disjoint sets according to their topological structure. By performing a resummation of all diagrams belonging to each set a regular expression represented by a secondary diagram is obtained. The secondary diagrams are again segregated into disjoint sets, and the series of all the secondary diagrams belonging to a given set is represented by a hyperdiagram. A one-to-one correspondence between the hyperdiagrams contributing to the number-density vertex functions, and diagrams contributing to the order-parameter vertex functions in a certain model system belonging to the Ising universality class is demonstrated. Corrections to scaling associated with irrelevant operators that are present in the model-system Hamiltonian, and other corrections specific to the RPM are also discussed

    Origin of elemental carbon in snow from western Siberia and northwestern European Russia during winter-spring 2014, 2015 and 2016

    Get PDF
    Short-lived climate forcers have been proven important both for the climate and human health. In particular, black carbon (BC) is an important climate forcer both as an aerosol and when deposited on snow and ice surface because of its strong light absorption. This paper presents measurements of elemental carbon (EC; a measurement-based definition of BC) in snow collected from western Siberia and northwestern European Russia during 2014, 2015 and 2016. The Russian Arctic is of great interest to the scientific community due to the large uncertainty of emission sources there. We have determined the major contributing sources of BC in snow in western Siberia and northwestern European Russia using a Lagrangian atmospheric transport model. For the first time, we use a recently developed feature that calculates deposition in backward (so-called retroplume) simulations allowing estimation of the specific locations of sources that contribute to the deposited mass

    Observation of Magnetic Monopoles in Spin Ice

    Full text link
    Excitations from a strongly frustrated system, the kagome ice state of the spin ice Dy2Ti2O7 under magnetic fields along a [111] direction, have been studied. They are theoretically proposed to be regarded as magnetic monopoles. Neutron scattering measurements of spin correlations show that close to the critical point the monopoles are fluctuating between high- and low-density states, supporting that the magnetic Coulomb force acts between them. Specific heat measurements show that monopole-pair creation obeys an Arrhenius law, indicating that the density of monopoles can be controlled by temperature and magnetic field.Comment: 5 pages, 4 figures; International Conference on Neutron Scattering 2009 (May 7); J. Phys. Soc. Jpn. 78, No.10 (2009) (Received Aug 11, 2009; accepted Sept 8, 2009; published Oct 13, 2009

    Origin of elemental carbon in snow from western Siberia and northwestern European Russia during winter–spring 2014, 2015 and 2016

    Get PDF
    Short-lived climate forcers have been proven important both for the climate and human health. In particular, black carbon (BC) is an important climate forcer both as an aerosol and when deposited on snow and ice surface because of its strong light absorption. This paper presents measurements of elemental carbon (EC; a measurement-based definition of BC) in snow collected from western Siberia and northwestern European Russia during 2014, 2015 and 2016. The Russian Arctic is of great interest to the scientific community due to the large uncertainty of emission sources there. We have determined the major contributing sources of BC in snow in western Siberia and northwestern European Russia using a Lagrangian atmospheric transport model. For the first time, we use a recently developed feature that calculates deposition in backward (so-called retroplume) simulations allowing estimation of the specific locations of sources that contribute to the deposited mass. EC concentrations in snow from western Siberia and northwestern European Russia were highly variable depending on the sampling location. Modelled BC and measured EC were moderately correlated (R = 0.53–0.83) and a systematic region-specific model underestimation was found. The model underestimated observations by 42 % (RMSE  =  49 ng g−1) in 2014, 48 % (RMSE  =  37 ng g−1) in 2015 and 27 % (RMSE  =  43 ng g−1) in 2016. For EC sampled in northwestern European Russia the underestimation by the model was smaller (fractional bias, FB  >  −100 %). In this region, the major sources were transportation activities and domestic combustion in Finland. When sampling shifted to western Siberia, the model underestimation was more significant (FB  <  −100 %). There, the sources included emissions from gas flaring as a major contributor to snow BC. The accuracy of the model calculations was also evaluated using two independent datasets of BC measurements in snow covering the entire Arctic. The model underestimated BC concentrations in snow especially for samples collected in springtime

    Quantitative imaging of concentrated suspensions under flow

    Full text link
    We review recent advances in imaging the flow of concentrated suspensions, focussing on the use of confocal microscopy to obtain time-resolved information on the single-particle level in these systems. After motivating the need for quantitative (confocal) imaging in suspension rheology, we briefly describe the particles, sample environments, microscopy tools and analysis algorithms needed to perform this kind of experiments. The second part of the review focusses on microscopic aspects of the flow of concentrated model hard-sphere-like suspensions, and the relation to non-linear rheological phenomena such as yielding, shear localization, wall slip and shear-induced ordering. Both Brownian and non-Brownian systems will be described. We show how quantitative imaging can improve our understanding of the connection between microscopic dynamics and bulk flow.Comment: Review on imaging hard-sphere suspensions, incl summary of methodology. Submitted for special volume 'High Solid Dispersions' ed. M. Cloitre, Vol. xx of 'Advances and Polymer Science' (Springer, Berlin, 2009); 22 pages, 16 fig

    LHCb calorimeters: Technical Design Report

    Get PDF

    LHCb RICH: Technical Design Report

    Get PDF

    LHCb magnet: Technical Design Report

    Get PDF
    corecore