2,998 research outputs found

    Article Addendum: Ecocultural basis of cognition: Farmers and fishermen are more holistic than herders

    Get PDF
    It has been hypothesized that interdependent (versus independent) social orientations breed more holistic (versus analytic) cognitions. If so, farming and small-scale fishing, which require more cooperation (and represent a more interdependent mode of being) than does herding, may encourage a more holistic mode of cognition. To test this hypothesis we compared responses to tasks measuring categorization, reasoning, and attention by members of herding, fishing, and farming communities in the eastern Black Sea Region of Turkey. The samples did not differ from each other in important demographic variables such as nationality, ethnicity, language, and religion, as well as age and education. As hypothesized, in all three tasks, results indicated a greater degree of holistic mode of cognition exhibited by the members of fishing and farming communities than members of herding communities. The findings support the notion that level of special interdependence fostered by ecocultural settings is likely to shape the ways in which individuals perceive and attend to their surrounding world

    Systematic Errors in the Hubble Constant Measurement from the Sunyaev-Zel'dovich effect

    Full text link
    The Hubble constant estimated from the combined analysis of the Sunyaev-Zel'dovich effect and X-ray observations of galaxy clusters is systematically lower than those from other methods by 10-15 percent. We examine the origin of the systematic underestimate using an analytic model of the intracluster medium (ICM), and compare the prediction with idealistic triaxial models and with clusters extracted from cosmological hydrodynamical simulations. We identify three important sources for the systematic errors; density and temperature inhomogeneities in the ICM, departures from isothermality, and asphericity. In particular, the combination of the first two leads to the systematic underestimate of the ICM spectroscopic temperature relative to its emission-weighed one. We find that these three systematics well reproduce both the observed bias and the intrinsic dispersions of the Hubble constant estimated from the Sunyaev-Zel'dovich effect.Comment: 26 pages, 7 figures, accepted for publication in ApJ, Minor change

    Investigating the hard X-ray emission from the hottest Abell cluster A2163 with Suzaku

    Get PDF
    We present the results from Suzaku observations of the hottest Abell galaxy cluster A2163 at z=0.2z=0.2. To study the physics of gas heating in cluster mergers, we investigated hard X-ray emission from the merging cluster A2163, which hosts the brightest synchrotron radio halo. We analyzed hard X-ray spectra accumulated from two-pointed Suzaku observations. Non-thermal hard X-ray emission should result from the inverse Compton (IC) scattering of relativistic electrons by the CMB photons. To measure this emission, the dominant thermal emission in the hard X-ray band must be modeled in detail. To this end, we analyzed the combined broad-band X-ray data of A2163 collected by Suzaku and XMM-Newton, assuming single- and multi-temperature models for thermal emission and the power-law model for non-thermal emission. From the Suzaku data, we detected significant hard X-ray emission from A2163 in the 12-60 keV band at the 28σ28\sigma level (or at the 5.5σ5.5\sigma level if a systematic error is considered). The Suzaku HXD spectrum alone is consistent with the single-T thermal model of gas temperature kT=14kT=14 keV. From the XMM data, we constructed a multi-T model including a very hot (kT=18kT=18 keV) component in the NE region. Incorporating the multi-T and the power-law models into a two-component model with a radio-band photon index, the 12-60 keV energy flux of non-thermal emission is constrained within 5.3±0.9(±3.8)×1012 ergs1cm25.3 \pm 0.9 (\pm 3.8)\times 10^{-12}~{\rm erg\, s^{-1} cm^{-2}}. The 90% upper limit of detected IC emission is marginal (<1.2×1011 ergs1cm2< 1.2\times 10^{-11}~{\rm erg\, s^{-1} cm^{-2}} in the 12-60 keV). The estimated magnetic field in A2163 is B>0.098 μGB > 0.098~{\rm \mu G}. While the present results represent a three-fold increase in the accuracy of the broad band spectral model of A2163, more sensitive hard X-ray observations are needed to decisively test for the presence of hard X-ray emission due to IC emission.Comment: 7 pages, 7 figures, A&A accepted. Minor correctio

    Imaging Simulations of the Sunyaev-Zel'dovich Effect for ALMA

    Full text link
    We present imaging simulations of the Sunyaev-Zel'dovich effect of galaxy clusters for the Atacama Large Millimeter/submillimeter Array (ALMA) including the Atacama Compact Array (ACA). In its most compact configuration at 90GHz, ALMA will resolve the intracluster medium with an effective angular resolution of 5 arcsec. It will provide a unique probe of shock fronts and relativistic electrons produced during cluster mergers at high redshifts, that are hard to spatially resolve by current and near-future X-ray detectors. Quality of image reconstruction is poor with the 12m array alone but improved significantly by adding ACA; expected sensitivity of the 12m array based on the thermal noise is not valid for the Sunyaev-Zel'dovich effect mapping unless accompanied by an ACA observation of at least equal duration. The observations above 100 GHz will become excessively time-consuming owing to the narrower beam size and the higher system temperature. On the other hand, significant improvement of the observing efficiency is expected once Band 1 is implemented in the future.Comment: 16 pages, 12 figures. Accepted for publication in PASJ. Note added in proof is include

    A cDNA Clone Encoding a Ferredoxin-NADP+ Reductase from Chlamydomonas reinhardtii

    Full text link

    START: Smoothed particle hydrodynamics with tree-based accelerated radiative transfer

    Get PDF
    We present a novel radiation hydrodynamics code, START, which is a smoothed particle hydrodynamics (SPH) scheme coupled with accelerated radiative transfer. The basic idea for the acceleration of radiative transfer is parallel to the tree algorithm that is hitherto used to speed up the gravitational force calculation in an N-body system. It is demonstrated that the radiative transfer calculations can be dramatically accelerated, where the computational time is scaled as Np log Ns for Np SPH particles and Ns radiation sources. Such acceleration allows us to readily include not only numerous sources but also scattering photons, even if the total number of radiation sources is comparable to that of SPH particles. Here, a test simulation is presented for a multiple source problem, where the results with START are compared to those with a radiation SPH code without tree-based acceleration. We find that the results agree well with each other if we set the tolerance parameter as < 1.0, and then it demonstrates that START can solve radiative transfer faster without reducing the accuracy. One of important applications with START is to solve the transfer of diffuse ionizing photons, where each SPH particle is regarded as an emitter. To illustrate the competence of START, we simulate the shadowing effect by dense clumps around an ionizing source. As a result, it is found that the erosion of shadows by diffuse recombination photons can be solved. Such an effect is of great significance to reveal the cosmic reionization process.Comment: 14 pages, 23 figures, accepted for publication in MNRA

    Quasi-hydrostatic intracluster gas under radiative cooling

    Full text link
    Quasi-hydrostatic cooling of the intracluster gas is studied. In the quasi-hydrostatic model, work done by gravity on the inflow gas with dP \neq 0, where P is the gas pressure, is taken into account in the thermal balance. The gas flows in from the outer part so as to compensate the pressure loss of the gas undergoing radiative cooling, but the mass flow is so moderate and smooth that the gas is considered to be quasi-hydrostatic. The temperature of the cooling gas decreases toward the cluster center, but, unlike cooling flows with dP = 0, approaches a constant temperature of \sim 1/3 the temperature of the non-cooling ambient gas. This does not mean that gravitational work cancels out radiative cooling, but means that the temperature of the cooling gas appears to approach a constant value toward the cluster center if the gas maintains the quasi-hydrostatic balance. We discuss the mass flow in quasi-hydrostatic cooling, and compare it with the standard isobaric cooling flow model. We also discuss the implication of \dot{M} for the standard cooling flow model.Comment: 5 pages, 1 figure, accepted for publication in A&

    The Sunyaev-Zel'dovich Effect at Five Arc-seconds: RXJ1347.5-1145 Imaged by ALMA

    Full text link
    We present the first image of the thermal Sunyaev-Zel'dovich effect (SZE) obtained by the Atacama Large Millimeter/submillimeter Array (ALMA). Combining 7-m and 12-m arrays in Band 3, we create an SZE map toward a galaxy cluster RXJ1347.5-1145 with 5 arc-second resolution (corresponding to the physical size of 20 kpc/h), the highest angular and physical spatial resolutions achieved to date for imaging the SZE, while retaining extended signals out to 40 arc-seconds. The 1-sigma statistical sensitivity of the image is 0.017 mJy/beam or 0.12 mK_CMB at the 5 arc-second full width at half maximum. The SZE image shows a good agreement with an electron pressure map reconstructed independently from the X-ray data and offers a new probe of the small-scale structure of the intracluster medium. Our results demonstrate that ALMA is a powerful instrument for imaging the SZE in compact galaxy clusters with unprecedented angular resolution and sensitivity. As the first report on the detection of the SZE by ALMA, we present detailed analysis procedures including corrections for the missing flux, to provide guiding methods for analyzing and interpreting future SZE images by ALMA.Comment: 20 pages, 13 figures. Accepted for publication in PAS

    Synthesis, Structure, and Ferromagnetism of a New Oxygen Defect Pyrochlore System Lu2V2O_{7-x} (x = 0.40-0.65)

    Full text link
    A new fcc oxygen defect pyrochlore structure system Lu2V2O_{7-x} with x = 0.40 to 0.65 was synthesized from the known fcc ferromagnetic semiconductor pyrochlore compound Lu2V2O7 which can be written as Lu2V2O6O' with two inequivalent oxygen sites O and O'. Rietveld x-ray diffraction refinements showed significant Lu-V antisite disorder for x >= 0.5. The lattice parameter versus x (including x = 0) shows a distinct maximum at x ~ 0.4. We propose that these observations can be explained if the oxygen defects are on the O' sublattice of the structure. The magnetic susceptibility versus temperature exhibits Curie-Weiss behavior above 150 K for all x, with a Curie constant C that increases with x as expected in an ionic model. However, the magnetization measurements also show that the (ferromagnetic) Weiss temperature theta and the ferromagnetic ordering temperature T_C both strongly decrease with increasing x instead of increasing as expected from C(x). The T_C decreases from 73 K for x = 0 to 21 K for x = 0.65. Furthermore, the saturation moment at a field of 5.5 T at 5 K is nearly independent of x, with the value expected for a fixed spin 1/2 per V. The latter three observations suggest that Lu2V2O_{7-x} may contain localized spin 1/2 vanadium moments in a metallic background that is induced by oxygen defect doping, instead of being a semiconductor as suggested by the C(x) dependence.Comment: 9 pages including 7 figures, 3 table
    corecore