734 research outputs found

    Collectivity in the optical response of small metal clusters

    Get PDF
    The question whether the linear absorption spectra of metal clusters can be interpreted as density oscillations (collective ``plasmons'') or can only be understood as transitions between distinct molecular states is still a matter of debate for clusters with only a few electrons. We calculate the photoabsorption spectra of Na2 and Na5+ comparing two different methods: quantum fluid-dynamics and time-dependent density functional theory. The changes in the electronic structure associated with particular excitations are visualized in ``snapshots'' via transition densities. Our analysis shows that even for the smallest clusters, the observed excitations can be interpreted as intuitively understandable density oscillations. For Na5+, the importance of self-interaction corrections to the adiabatic local density approximation is demonstrated.Comment: 6 pages, 3 figures. To appear in special issue of Applied Physics B, "Optical properties of Nanoparticles

    Photoelectron spectra of anionic sodium clusters from time-dependent density-functional theory in real-time

    Full text link
    We calculate the excitation energies of small neutral sodium clusters in the framework of time-dependent density-functional theory. In the presented calculations, we extract these energies from the power spectra of the dipole and quadrupole signals that result from a real-time and real-space propagation. For comparison with measured photoelectron spectra, we use the ionic configurations of the corresponding single-charged anions. Our calculations clearly improve on earlier results for photoelectron spectra obtained from static Kohn-Sham eigenvalues

    The Hubble Legacy Archive ACS Grism Data

    Full text link
    A public release of slitless spectra, obtained with ACS/WFC and the G800L grism, is presented. Spectra were automatically extracted in a uniform way from 153 archival fields (or "associations") distributed across the two Galactic caps, covering all observations to 2008. The ACS G800L grism provides a wavelength range of 0.55-1.00 \mum,withadispersionofm, with a dispersion of 40 \ \AA / pixelandaresolutionof and a resolution of \sim 80\ \AAforpointlikesources.TheACSG800Limagesandmatcheddirectimageswerereducedwithanautomaticpipelinethathandlesallstepsfromarchiveretrieval,alignmentandastrometriccalibration,directimagecombination,cataloguegeneration,spectralextractionandcollectionofmetadata.Thelargenumberofextractedspectra(73,581)demandedautomaticmethodsforqualitycontrolandanautomatedclassificationalgorithmwastrainedonthevisualinspectionofseveralthousandspectra.Thefinalsampleofqualitycontrolledspectraincludes47,919datasets(65ofextractedspectra)for for point-like sources. The ACS G800L images and matched direct images were reduced with an automatic pipeline that handles all steps from archive retrieval, alignment and astrometric calibration, direct image combination, catalogue generation, spectral extraction and collection of metadata. The large number of extracted spectra (73,581) demanded automatic methods for quality control and an automated classification algorithm was trained on the visual inspection of several thousand spectra. The final sample of quality controlled spectra includes 47,919 datasets (65% of the total number of extracted spectra) for 32,149uniqueobjects,withamedian unique objects, with a median i_{\rm AB}bandmagnitudeof23.7,reaching26.5ABforthefaintestobjects.Eachreleaseddatasetcontainsscienceready1Dand2Dspectra,aswellasmultibandimagecutoutsofcorrespondingsourcesandausefulpreviewpagesummarisingthedirectandslitlessdata,astrometricandphotometricparameters.Inordertocharacterizetheslitlessspectra,emissionlinefluxandequivalentwidthsensitivityoftheACSdatawerecomparedwithpublicgroundbasedspectraintheGOODSSouthfield.Anexamplelistofemissionlinegalaxieswithtwoormoreidentifiedlinesisalsoincluded,coveringtheredshiftrange-band magnitude of 23.7, reaching 26.5 AB for the faintest objects. Each released dataset contains science-ready 1D and 2D spectra, as well as multi-band image cutouts of corresponding sources and a useful preview page summarising the direct and slitless data, astrometric and photometric parameters. In order to characterize the slitless spectra, emission-line flux and equivalent width sensitivity of the ACS data were compared with public ground-based spectra in the GOODS-South field. An example list of emission line galaxies with two or more identified lines is also included, covering the redshift range 0.2-4.6$.Comment: Accepted for publication in Astronomy and Astrophysics; 29 pages, 16 Figures, 4 Tables in text and 3Tables in Appendi

    Equilibrium and time-dependent Josephson current in one-dimensional superconducting junctions

    Full text link
    We investigate the transport properties of a one-dimensional superconductor-normal metal-superconductor (S-N-S) system described within the tight-binding approximation. We compute the equilibrium dc Josephson current and the time-dependent oscillating current generated after the switch-on of a constant bias. In the first case an exact embedding procedure to calculate the Nambu-Gorkov Keldysh Green's function is employed and used to derive the continuum and bound states contributions to the dc current. A general formalism to obtain the Andreev bound states (ABS) of a normal chain connected to superconducting leads is also presented. We identify a regime in which all Josephson current is carried by the ABS and obtain an analytic formula for the current-phase relation in the limit of long chains. In the latter case the condition for perfect Andreev reflections is expressed in terms of the microscopic parameters of the model, showing a limitation of the so called wide-band-limit (WBL) approximation. When a finite bias is applied to the S-N-S junction we compute the exact time-evolution of the system by solving numerically the time-dependent Bogoliubov-deGennes equations. We provide a microscopic description of the electron dynamics not only inside the normal region but also in the superconductors, thus gaining more information with respect to WBL-based approaches. Our scheme allows us to study the ac regime as well as the transient dynamics whose characteristic time-scale is dictated by the velocity of multiple Andreev reflections

    Two Avenues to Self-Interaction Correction within Kohn-Sham Theory: Unitary Invariance is the Shortcut

    Get PDF
    The most widely-used density functionals for the exchange-correlation energy are inexact for one-electron systems. Their self-interaction errors can be severe in some applications. The problem is not only to correct the self-interaction error, but to do so in a way that will not violate size-consistency and will not go outside the standard Kohn-Sham density functional theory. The solution via the optimized effective potential (OEP) method will be discussed, first for the Perdew-Zunger self-interaction correction (whose performance for molecules is briefly summarized) and then for the more modern self-interaction corrections based upon unitarily-invariant indicators of iso-orbital regions. For the latter approaches, the OEP construction is greatly simplified. The kinetic-energy-based iso-orbital indicator \tau^W_\sigma(\re)/\tau_\sigma(\re) will be discussed and plotted, along with an alternative exchange-based indicator

    Effect of growth conditions on optical properties of CdSe/ZnSe single quantum dots

    Full text link
    In this work, we have investigated the optical properties of two samples of CdSe quantum dots by using submicro-photoluminescence spectroscopy. The effect of vicinal-surface GaAs substrates on their properties has been also assessed. The thinner sample, grown on a substrate with vicinal surface, includes only dots with a diameter of less than 10 nm (type A islands). Islands of an average diameter of about 16 nm (type B islands) that are related to a phase transition via a Stranski-Krastanow growth process are also distributed in the thicker sample grown on an oriented substrate. We have studied the evolution of lineshapes of PL spectra for these two samples by improving spatial resolution that was achieved using nanoapertures or mesa structures. It was found that the use of a substrate with the vicinal surface leads to the suppression of excitonic PL emitted from a wetting layer.Comment: 2pages, 2 figures, Proceedings of International Conference On Superlattices Nano-Structures And Nano-Devices, July, Toulouse, France, to appear in the special issue of Physica

    Violation of the `Zero-Force Theorem' in the time-dependent Krieger-Li-Iafrate approximation

    Full text link
    We demonstrate that the time-dependent Krieger-Li-Iafrate approximation in combination with the exchange-only functional violates the `Zero-Force Theorem'. By analyzing the time-dependent dipole moment of Na5 and Na9+, we furthermore show that this can lead to an unphysical self-excitation of the system depending on the system properties and the excitation strength. Analytical aspects, especially the connection between the `Zero-Force Theorem' and the `Generalized-Translation Invariance' of the potential, are discussed.Comment: 5 pages, 4 figure

    Time-dependent quantum transport with superconducting leads: a discrete basis Kohn-Sham formulation and propagation scheme

    Get PDF
    In this work we put forward an exact one-particle framework to study nano-scale Josephson junctions out of equilibrium and propose a propagation scheme to calculate the time-dependent current in response to an external applied bias. Using a discrete basis set and Peierls phases for the electromagnetic field we prove that the current and pairing densities in a superconducting system of interacting electrons can be reproduced in a non-interacting Kohn-Sham (KS) system under the influence of different Peierls phases {\em and} of a pairing field. An extended Keldysh formalism for the non-equilibrium Nambu-Green's function (NEGF) is then introduced to calculate the short- and long-time response of the KS system. The equivalence between the NEGF approach and a combination of the static and time-dependent Bogoliubov-deGennes (BdG) equations is shown. For systems consisting of a finite region coupled to N{\cal N} superconducting semi-infinite leads we numerically solve the static BdG equations with a generalized wave-guide approach and their time-dependent version with an embedded Crank-Nicholson scheme. To demonstrate the feasibility of the propagation scheme we study two paradigmatic models, the single-level quantum dot and a tight-binding chain, under dc, ac and pulse biases. We provide a time-dependent picture of single and multiple Andreev reflections, show that Andreev bound states can be exploited to generate a zero-bias ac current of tunable frequency, and find a long-living resonant effect induced by microwave irradiation of appropriate frequency.Comment: 20 pages, 9 figures, published versio

    Renormalization of Hamiltonian Field Theory; a non-perturbative and non-unitarity approach

    Get PDF
    Renormalization of Hamiltonian field theory is usually a rather painful algebraic or numerical exercise. By combining a method based on the coupled cluster method, analysed in detail by Suzuki and Okamoto, with a Wilsonian approach to renormalization, we show that a powerful and elegant method exist to solve such problems. The method is in principle non-perturbative, and is not necessarily unitary.Comment: 16 pages, version shortened and improved, references added. To appear in JHE

    Coordination-driven magnetic-to-nonmagnetic transition in manganese doped silicon clusters

    Full text link
    The interaction of a single manganese impurity with silicon is analyzed in a combined experimental and theoretical study of the electronic, magnetic, and structural properties of manganese-doped silicon clusters. The structural transition from exohedral to endohedral doping coincides with a quenching of high-spin states. For all geometric structures investigated, we find a similar dependence of the magnetic moment on the manganese coordination number and nearest neighbor distance. This observation can be generalized to manganese point defects in bulk silicon, whose magnetic moments fall within the observed magnetic-to-nonmagnetic transition, and which therefore react very sensitively to changes in the local geometry. The results indicate that high spin states in manganese-doped silicon could be stabilized by an appropriate lattice expansion
    corecore