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In this work we put forward an exact one-particle framework to study nanoscale Josephson junctions out of

equilibrium and propose a propagation scheme to calculate the time-dependent current in response to an

external applied bias. Using a discrete basis set and Peierls phases for the electromagnetic field, we prove that

the current and pairing densities in a superconducting system of interacting electrons can be reproduced in a

noninteracting Kohn-Sham sKSd system under the influence of different Peierls phases and of a pairing field.

In the special case of normal systems, our result provides a formulation of time-dependent current-density-

functional theory in tight-binding models. An extended Keldysh formalism for the nonequilibrium Nambu-

Green’s function sNEGFd is then introduced to calculate the short- and long-time response of the KS system.

The equivalence between the NEGF approach and a combination of the static and time-dependent

Bogoliubov-de Gennes sBdGd equations is shown. For systems consisting of a finite region coupled to N

superconducting semi-infinite leads, we numerically solve the static BdG equations with a generalized wave-

guide approach and their time-dependent version with an embedded Crank-Nicholson scheme. To demonstrate

the feasibility of the propagation scheme, we study two paradigmatic models, the single-level quantum dot and

a tight-binding chain, under dc, ac, and pulse biases. We provide a time-dependent picture of single and

multiple Andreev reflections, show that Andreev bound states can be exploited to generate a zero-bias ac

current of tunable frequency, and find a long-living resonant effect induced by microwave irradiation of

appropriate frequency.
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I. INTRODUCTION

In the last two decades, superconducting nanoelectronics

has emerged as an interdisciplinary field bridging different

areas of physics such as superconductivity, quantum trans-

port, and quantum computation.1–3 For practical applications,

the reduction in heat losses in superconducting circuits con-

stitutes a major advantage over semiconductor electronics

where a molecular junction is more subject to thermal

instabilities.4–7

The idea of exploiting atomic-size quantum point contacts

or quantum dots sQDsd coupled to superconducting leads as

quantum bits sQUBITsd has received significant attention

both theoretically and experimentally.8–11 The state of a

QUBIT evolves in time according to the Schrödinger equa-

tion for open quantum systems and can be manipulated using

electromagnetic pulses of the duration of few nanoseconds or

even faster. Due to the reduced dimensionality and the high

speed of the pulses, these systems can be classified as ul-

trafast Josephson nanojunctions sUF-JNJsd. The microscopic

description of the out-of-equilibrium properties of an UF-JNJ

is not only of importance for their potential applications in

future electronics but also of considerable fundamental inter-

est. The quantum nature of the nanoscale device leads to a

subharmonic gap structure,12–16 ac characteristics,17,18

current-phase relation,19,20 etc., that differ substantially from

those of a macroscopic Josephson junction. Furthermore,

there are regimes in which the electron-electron scattering

inside the device plays an important role.21–25

We here focus on a different relevant aspect of UF-JNJ,

namely, the ab initio description of their short-time re-
sponses. Considerable theoretical progresses have been made
to construct a first-principles scheme of electron transport
through molecules placed between normal metals. On the
contrary, despite the recent experimental advances in fabri-

cating superconducting quantum point contacts, a first-

principles approach to superconducting nanoelectronics is

still missing. Furthermore, time-dependent sTDd properties

such as the switch on/off time of the current or the response

to time-dependent ac fields or train pulses has remained

largely unexplored. There are several difficulties related to

the construction of a feasible time-dependent approach al-

ready at a mean-field level. The system is open, the elec-

tronic energy scales are 2–3 orders of magnitude larger than

a typical superconducting gap, the problem is intrinsically

time dependent seven for dc biasesd, and the possible forma-

tion of Andreev bound states sABSsd give rise to persistent

oscillations in the density and current. The time evolution of

localized wave-packets’ scattering across a superconductor-

normal interface was explored long ago.26–28 More recently,

the analysis has been extended to scattering states in

superconductor-device-normal junctions using the wideband-

limit approximation29 and in superconductor-device-

superconductor sS-D-Sd junctions by approximating the

leads with finite-size reservoirs.30 However, there has been

no attempt to calculate the response of S-D-S junctions to

TD applied voltages using truly semi-infinite leads.

In this work, we propose a one-particle framework to

study TD quantum transport in UF-JNJ, construct a suitable

propagation scheme and apply it to study genuine TD prop-
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erties such as the switch on/off of the current, the onset of a
Josephson regime, ABS oscillations, ac transport, and the
time evolution of multiple Andreev reflections.

The one-particle framework, described in Secs. II A and
II B, is an extension of TD superconducting density-
functional theory sRef. 31d to systems with a discrete basis
and is built on the mapping from densities to potentials pro-
posed by van Leeuwen32 and Vignale.33 It is shown that un-
der reasonable assumptions the current density and pairing
density of an interacting system perturbed by a TD electro-
magnetic field can be reproduced in a Kohn-Sham system of
noninteracting electrons perturbed by a TD electromagnetic
and pairing fields, and that these fields are unique. In the
special case of normal systems such result provides a formu-
lation of TD current-density-functional theory in tight-
binding models.

An extended Keldysh formalism for the nonequilibrium
Nambu-Green’s function is introduced in Sec. II C and used
to calculate the time-dependent current, density, and pairing
density of the Kohn-Sham Hamiltonian. By adding a vertical
imaginary track to the original Keldysh contour,34–36 we are
able to extract the response of the system just after the ap-
plication of the bias stransient regimed and to describe the
onset of the Josephson regime. We also show the equivalence
between the equations of motion for the Nambu-Green’s
function on the extended contour and the combination of the
static and TD Bogoliubov-de Gennes equations.

In Sec. III, we illustrate a procedure for the calculation of
the one-particle eigenstates of a system consisting of N
semi-infinite superconducting leads coupled to a finite region
C. These states are then propagated in time according to the
TD Bogoliubov-de Gennes equations using an embedded
Crank-Nicholson algorithm which reduces to that of Refs. 37
and 38 in the case of normal leads. The propagation scheme
is unitary snorm conservingd and incorporates exactly the
transparent boundary conditions.

The feasibility of the method is demonstrated in Sec. IV
where we calculate the TD current, density, and pairing den-
sity of S-D-S junctions under dc, ac, and pulse biases. The
paradigmatic model with a single atomic level connected to a
left and right superconducting leads is investigated in detail.

We provide a time-dependent picture of single and multiple

Andreev reflections and of the consequent formation of Coo-

per pairs at the interface. We show that the smaller is the

bias, the longer and the more complex is the transient re-

gime. We also study how the system relaxes after the bias is

switched off. Due to the presence of ABS, a tiny difference

in the switch-off time can cause a large difference in the

relaxation behavior with persistent oscillations of tunable

frequency. ABS also play a crucial role in microwave ac

transport. Tuning the frequency of the microwave field ac-

cording to the ABS energy difference one produces a long-

living transient resonant effect in which the amplitude of the

ac current is about an order of magnitude larger than that of

the current out of resonance. Finally we consider one-

dimensional atomic chains coupled to superconducting leads.

We calculate the TD current-density pattern along the chain

for dc sacd biases and show a clear-cut transient scenario of

the multiple sphoton-assistedd Andreev reflections. A sum-

mary of the main findings and an outlook on future perspec-

tives are drawn in Sec. V.

II. GENERAL FORMULATION

A. Hamiltonian of the system

The Hamiltonian of a system of interacting electrons can

be written in terms of the field operators ĉssrdfĉs
†srdg which

destroy screated an electron of spin s in position r. We ex-

pand the field operators in some suitable basis of localized

orbitals wmsrd as ĉssrd=omĉmswmsrd. Assuming, for simplic-

ity, that the wm’s are orthonormal the ĉ’s operators obey the

anticommutation relations,

hĉms, ĉns8

† j = dss8
dnm. s1d

In the presence of an external static electromagnetic and

pairing field, the Hamiltonian has the general form

Ĥ0 = K̂0 + D̂0 + D̂0
† + Ĥint. s2d

The first term is the free-electron part and reads

K̂0 = o
s

o
mn

Tmne
igmnĉms

†
ĉns s3d

with real symmetric hopping parameters Tmn=Tnm and real

antisymmetric phases gmn=−gnm. The phases account for the

presence of an external vector potential Asrd, in accordance

with the Peierls prescription. If we use a grid basis for the

expansion of the field operators with grid points rm then

gmn=
1

c
ern

rmdl ·Asrd. The second term in Eq. s2d represents the
pairing field operator which couples the pairing density op-

erator to an external field and reads

D̂0 = o
m

Dmĉm↑
†
ĉm↓
† . s4d

We notice that the pairing field Dm is local in the chosen

basis. This term is usually set to zero since the transition to a

superconducting state is caused by the interaction part. Our

motivation to include it at this stage will soon become clear.

The interaction part of the Hamiltonian Ĥint contains terms

more than quadratic in the ĉ’s operators. We do not specify

the form of Ĥint which can be any. We, however, require that

it commutes with the density operator n̂ms; ĉms
† ĉms,

fĤint, n̂msg = 0, ∀ m,s . s5d

The above condition is fulfilled on a grid basis as well as in

tight-binding models with Hubbard-type interactions.

We are interested in the dynamics of the system when an

extra time-dependent electromagnetic field and pairing po-

tential is switched on at t=0. The pairing potential must here

be considered as an independent external field. Since the

time-dependent part of the scalar potential can always be

gauged away we restrict to time-dependent Hamiltonians of

the form

Ĥstd = K̂std + D̂std + D̂†std + Ĥint, s6d

where
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K̂std = o
s

o
mn

Tmne
igmnstdĉms

†
ĉns s7d

and

D̂std = o
m

Dmstdĉm↑
†
ĉm↓
† . s8d

In 1994, Wacker et al.31 put forward a rigorous frame-
work, known as TD density functional theory for supercon-
ductors sSCDFTd, to study the dynamics of a superconduct-
ing system in the continuum case. The continuum

Hamiltonian can be obtained from the Hamiltonian in Eq. s6d
with the wm’s a grid basis in the limit of zero spacing. They

proved that given an initial many-body state uF0l, the current
and pairing densities evolving under the influence of two

different vector potentials A and A8 and/or two different

pairing potentials D and D8 are always different. This result

renders all observable quantities functionals of the current

and pairing densities, which can therefore be calculated in a

one-particle manner.31 The original formulation relies on the

assumption that the time-dependent current and pairing den-

sities of the interacting Hamiltonian can be reproduced in a

noninteracting Hamiltonian under the influence of another

vector and pairing potential, i.e., that the interacting A-D
densities are also noninteracting A-D representable. The in-

teracting versus noninteracting representability assumption is

present also in the original formulation of TD density func-

tional theory sDFTd by Runge and Gross39 and TD current

density functional theory sCDFTd by Ghosh and Dhara.40

The representability problem in TDDFT was solved by van

Leeuwen who proved that the TD density of a system with

interaction Ĥint under the influence of a TD scalar potential V

can be reproduced in another system with interaction Ĥint8

under the influence of a TD scalar potential V8 and that V8 is

unique.32 We will refer to such result as the van Leeuwen

theorem. Taking Ĥint8 =0 the van Leeuwen theorem implies

that the TD interacting density can be reproduced in a system

of noninteracting electrons. Later Vignale extended the van

Leeuwen theorem to solve the representability problem in

TDCDFT.33 In the next section, we show that the results by

van Leeuwen and Vignale can be further extended to solve

the representability problem in TDSCDFT. The theory is for-

mulated on a discrete basis and it is not limited to pure states,

implying that we also have access to the finite-temperature

domain.

B. One-particle Kohn-Sham scheme of TDSCDFT

Let r̂std be the density matrix at time t of the system

described by the Hamiltonian in Eq. s6d. We denote by

Ostd;Trhr̂stdÔstdj the time-dependent ensemble average of

a generic operator Ôstd, where the “Tr” symbol signifies the

trace over a complete set of many-body states. The average

Ostd obeys the equation of motion,

d

dt
Ostd =

]

]t
Ostd + i Trhr̂stdfĤstd,Ôstdgj . s9d

It is easy to verify that when Ôstd is the density operator

n̂m;osĉms
† ĉms, Eq. s9d yields

d

dt
nmstd = o

n

Jmnstd − 4 ImfDm
p stdPmstde−2iTmmtg , s10d

where Jmnstd and Pmstd are the expectation value of the bond-

current operator,

Ĵmnstd ;
1

i
o
s

sTmne
igmnstdĉms

†
ĉns − H.c.d s11d

and pairing density operator,

P̂mstd ; ĉm↓ĉm↑e
2ie0

t
dt8Tmm = ĉm↓ĉm↑e

2iTmmt. s12d

Equation s10d is the proper extension of the continuity equa-

tion to systems exposed to a pairing field. The term D̂std
+ D̂†std acts as if there were TD sources and sinks.

Notice that under the gauge transformation ĉns

→eibnstdĉns fwith bns0d=0g, the on-site energies change as

Tmm→Tmm−dbmstd /dt while the phases and the pairing field

change according to gmnstd→gmnstd+bmstd−bnstd and

Dmstd→Dmstdexpf2ibmstdg. Therefore the bond-current op-

erator Ĵmn and pairing density operator P̂m are gauge invari-

ant. In a grid basis representation with grid points rm the

phases bmstd are the discretized values of the scalar function

Lsrm , td which defines the gauge-transformed vector poten-

tial A and scalar potential V :A→A+c=L and V→V

−]L /]t.

The equation of motion for the bond current Jmnstd can be

cast as follows:

d

dt
Jmnstd = Kmnstd

d

dt
gmnstd + Fmnstd . s13d

The first term in the right-hand side srhsd is exactly

]Jmnstd /]t; the operator K̂mnstd;ossTmne
igmnstdĉms

† ĉns+H.c.d
is the energy density of the bond m-n. The second term in the

rhs is, therefore, the average of F̂mnstd; ifĤstd , Ĵmnstdg, see
Eq. s9d.

The derivation of the equation of motion for the pairing

density Pmstd is also straightforward and leads to

S d

dt
− 2iTmmDPmstd = iDmstdfnmstd − 1ge2iTmmt + iGmstde2iTmmt

s14d

with Ĝmstd;fK̂std+ Ĥint , ĉm↓ĉm↑g.
We now ask the question whether the densities Jmnstd for

all bonds m-n with TmnÞ0 and Pmstd can be reproduced in a

system with a different interaction Hamiltonian Ĥint8 under

the influence of TD phases g8std and pairing potential D8std
starting from an initial density matrix r̂8s0d.

For the densities to be the same at time t=0, we have to

choose r̂8s0d and g8s0d in such a way that

Trhr̂8s0dĴmn8 s0dj = Trhr̂s0dĴmns0dj , s15d

Trhr̂8s0dP̂ms0dj = Trhr̂s0dP̂ms0dj . s16d

Notice that in the primed system, the bond-current operator

Ĵmn8 is different from Ĵmn since the phases g8 are generally
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different from g. On the contrary, the pairing density opera-

tor is the same in the two systems. Equations s15d and s16d
define the compatible initial configurations of the primed

system.

We answer the above question affirmatively by showing

that given a compatible initial configuration fr̂8s0d ,g8s0dg
and under reasonable conditions, there exist g8std and D8std
for which the bond current and pairing density of the original

and primed system are the same at all times. The formal

statement is enunciated in the following

Theorem. Given a compatible initial configuration

fr̂8s0d ,g8s0dg such that

Kmn8 s0d = TrHr̂8s0do
s

sTmne
igmn8 s0dĉms

†
ĉns + H.c.dJ Þ 0

s17d

for all bonds m-n with TmnÞ0, and

nm8 s0d = Trhr̂8s0dn̂mj Þ 1, s18d

which implies that at time t=0 none of the orbitals wm are

half filled in the primed system, there exist a unique set of

continuous phases g8std and pairing potential D8std that re-

produce in the primed system the densities Jmnstd and Pmstd
of the original system.

Remarks. Before presenting the proof of the Theorem, we

discuss few relevant implications. s1d If the original system

is a superconducting system with an attractive interaction

Ĥint and a vanishing pairing field, i.e., D̂=0, the theorem

implies that the bond currents and pairing densities can be

reproduced in a system of noninteracting electrons, i.e.,

Ĥint8 =0 perturbed by TD phases g8 and pairing field D8. In

the following, we will refer to such noninteracting system as

the Kohn-Sham sKSd system and to the TD perturbation as

the KS phases and KS pairing potential. In Sec. III, we de-

scribe how to perform the time evolution of such KS systems

for geometries relevant to quantum transport. s2d For inter-

acting systems with D=0 and initially in equilibrium in the

absence of electromagnetic fields, the phases gs0d=0 and

hence Jmns0d=0 for all bonds. In the KS system, a possible

compatible initial configuration is therefore g8s0d=0 and

r̂8s0d such that the expectation value of the one-particle den-

sity matrix nmn8 s0d=osTrhr̂8s0dĉms
† ĉnsj is real. For such ini-

tial configurations, the condition s17d becomes nmn8 s0dÞ0 for

all bonds m-n with TmnÞ0. s3d If we ask the question

whether only the bond currents Jmnstd of a system with

Hamiltonian s6d and zero pairing field, i.e., D=0, can be

reproduced in a system with zero pairing field, i.e., D8=0,

and different interactions Ĥint8 under the influence of different

phases g8 starting from some initial density matrix r̂8s0d, the
answer is affirmative provided that r̂8s0d and g8s0d fulfill

Eqs. s15d and s17d. This corollary extends TDCDFT to tight-

binding models using the Peierls phases as the basic KS

fields and lays down the basis for a density-functional TD

theory in discrete systems.41 We conclude this section with

the proof of the Theorem.

Proof. The current and pairing densities of the primed

system obey the equations of motion fEqs. s13d and s14dg
with Kmnstd→Kmn8 std, Fmnstd→Fmn8 std and nmstd→nm8 std,

Gmstd→Gm8 std. Therefore, for a generic time t, the densities

of the two systems are the same provided that

Kmn8 std
d

dt
gmn8 std = Kmnstd

d

dt
gmnstd + Fmnstd − Fmn8 std ,

s19d

fnm8 std − 1gDm8 std = fnmstd − 1gDmstd + Gmstd − Gm8 std .

s20d

A discussion on the existence and the uniqueness of the so-

lution for the coupled Eqs. s19d and s20d is rather compli-

cated since the dependence on the phases g8 and potentials

D8 in F8 and G8 enters implicitly via the TD density matrix

r̂8std. To proceed further we then follow the approach of

Vignale and assume that the time-dependent phases and pair-

ing potentials and hence all expectation values are analytic

functions of time around t=0.33 Expanding all quantities in

Eqs. s19d and s20d in their Taylor series and equating the

coefficients with the same power of t we obtain

sl + 1dKmn8
s0dgmn8

sl+1d = − o
k=0

l−1

sk + 1dKmn8
sl−kdgmn8

sk+1d

+ o
k=0

l

sk + 1dKmn
sl−kdgmn

sk+1d + Fmn8
sld − Fmn

sld ,

s21d

fnm8
s0d − 1gDm8

sld = − o
k=0

l−1

nm8
sl−kdDm8

skd

+ o
k=0

l

nm
sl−kdDm

skd − Dm
sld + Gm8

sld − Gm
sld, s22d

where for a generic analytic function fstd we defined f sld as

the lth coefficient of the Taylor expansion. We now show that

Eqs. s21d and s22d constitute a set of recursive relations to

calculate all g8
sld and D8

sld once all g8
skd and D8

skd are known

for k, l. We first observe that the lth derivative of the den-

sity matrix r̂8std in t=0 depends at most on the sl−1d deriva-
tive of g8 and D8 since i

d

dt
r̂8std= fĤ8std , r̂8stdg. The quantity

Fmn8 depends on sg8 ,D8d implicitly through r̂8std and explic-

itly through the commutator fĤ8std , Ĵmn8 stdg. Since the lth de-

rivative of the commutator depends on all sg8
skd ,D8

skdd with

k# l, the quantity Fmn8
sld is a function of sg8

skd ,D8
skdd with k

# l. On the contrary, the quantities K8 and G8 depend implic-

itly on sg8 ,D8d through r̂8std but they explicitly depend only

on g8, i.e., there is no explicit dependence on the pairing

potential D8. We therefore conclude that K8
sld and G8

sld de-

pend on the g8
skd with k# l and on D8

skd with k, l. Finally,

from Eq. s10d we see that the lth derivative of the density

nm8 std depends at most on the l−1 derivative of g8 and D8.

The table below summarizes the dependency of the various

quantities on the order of the derivatives of g8 and D8,
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F8
sld K8

sld G8
sld n8

sld

hg8
skdj k # l k # l k # l k , l

hD8
skdj k # l k , l k , l k , l

. s23d

From the above considerations it follows that Eq. s22d
with l=0 can be used to determine D8

s0d since the rhs de-

pends only on g8
s0d=g8s0d and from Eq. s18d the prefactor

fnm8
s0d−1gÞ0. Having D8

s0d we can easily calculate g8
s1d from

Eq. s21d with l=0 since the rhs depends only on g8
s0d and

D8
s0d and from Eq. s17d Kmn8

s0d
Þ0. With g8

s1d, g8
s0d, and D8

s0d

we can use Eq. s22d with l=1 to extract D8
s1d, then Eq. s21d

with l=1 to extract g8
s2d and so on and so forth.

C. Keldysh-Green’s function in the Nambu space

1. Keldysh contour

We now specialize to interacting systems which are ini-

tially in equilibrium at temperature T=1 /b and chemical po-

tential m; such initial configurations are the relevant ones in

quantum transport experiments, see Sec. II D.42 From static

SCDFT sRef. 43d, we can choose the initial density matrix of

the KS system as the thermal density matrix of a system

described by the equilibrium Hamiltonian s2d with Ĥint=0

and KS phases g and pairing potentials D, and from the

results of the previous section we know that such KS system

can reproduce the TD bond currents and pairing densities of

the interacting system if perturbed by TD KS phases gstd and
pairing potentials Dstd. Denoting by Ĥsstd= K̂std+ D̂std
+ D̂†std, the TD Hamiltonian and by r̂sstd the TD density

matrix of the KS system we then have

r̂sstd =
1

Z
Ŝsstde

−bsĤs−mN̂dŜs
†std , s24d

where Z=Trhe−bsĤs−mN̂dj is the partition function and Ŝsstd is
the KS evolution operator to be determined from i

d

dt
Ŝsstd

= ĤsstdŜsstd with boundary condition Ŝss0d=1. The Hamil-

tonian Ĥs= Ĥss0d is the equilibrium KS Hamiltonian while N̂

is the total number of particles operator. It is worth to notice

that, in general, fĤs , N̂gÞ0 due to the presence of the pairing

field. The TD expectation value Osstd of a generic operator

Ôstd is in the KS system given by34–36,44

Osstd = Trhr̂sstdÔstdj ; kTKhÔsz = t6djl , s25d

where we have introduced the short hand notation,

kTKh . . . jl =
TrfTKhe−iegK

dz̄Ĥm,ssz̄d. . .jg

TrfTKhe−iegK
dz̄Ĥm,ssz̄djg

. s26d

In the above equation, gK is the Keldysh contour45 illustrated

in Fig. 1 which is an oriented contour composed by an upper

branch going from 0 to `, a lower branch going from ` to 0,

and a purely imaginary sthermald segment going from 0 to

−ib. The operator TK is the contour ordering operator and

move operators with later contour variable to the left san
extra minus sign has to be included for odd permutations of

fermion fieldsd. Finally Ĥm,ssz̄= t̄6d= Ĥsst̄d, where the contour
points t̄− / t̄+ lie on the upper/lower branch at a distance t̄ from

the origin while for z̄ on the thermal segment Ĥm,ssz̄=−itd
= Ĥs−mN̂. Thus, the denominator in Eq. s26d is simply the

partition function Z. In Eq. s25d, the variable z on the con-

tour can be taken either on the upper st−d or lower st+d branch
at a distance t from the origin.

2. Keldysh-Nambu-Green’s function

The KS expectation value Osstd of an operator Ôstd is, in
general, different from the expectation value Ostd produced

by the original system. However, if Ôstd is the KS bond-

current operator or the pairing density operator, the average

over the KS system yields exactly the bond current and the

pairing density of the original system. It is therefore conve-

nient to introduce the non-equilibrium Nambu-Green’s func-

tions sNEGFd from which the expectation value of any one-

particle operator can be extracted. A further reason for us to

introduce the non-equilibrium Nambu-Green’s functions

sNEGFd is that the equilibrium and time-dependent

Bogoliubov-de Gennes equations can be elegantly derived

from them, thus illustrating the equivalence between the

NEGF and the Bogoliubov-de Gennes formalisms. The nor-

mal and anomalous components of the NEGF are defined

according to46

Gs,mnsz;z8d =
1

i
kTKhĉmsszdĉns

† sz8djl , s27d

Fmnsz;z8d =
1

i
kTKhĉm↓szdĉn↑sz8djl , s28d

Fmnsz;z8d = −
1

i
kTKhĉn↑

† sz8dĉm↓
† szdjl , s29d

where z ,z8 run on the Keldysh contour gK.
34,35,44,47 The ĉ

operators carry a dependence on the z variable; such depen-

dence simply specifies their position along the contour so to

FIG. 1. sColor onlined The Keldysh contour gK described in the

main text. The contour variable z= t− / t+ denotes a point on the

upper/lower branch at a distance t from the origin while z=−it

denotes a point on the imaginary track at a distance t from the

origin. In the figure, we also illustrate the points 0− searliest point
on gKd, 0+, and −ib slatest point on gKd.
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have a well-defined action of TK.
44 The TD bond current and

pairing density can be expressed in terms of Gssz ;z8d and

Fsz ;z8d as

Jmnstd = − o
s

sTmne
igmnstdGs,nmst−;t+d + H.c.d , s30d

Pmstd = iFmmst+;t−de2iTmmt. s31d

3. Equations of motion

The NEGF of the KS system obey the following equa-

tions of motion:

Hi dW
dz

1I − HI mszdJGI sz;z8d = 1Idsz − z8d , s32d

GI sz;z8dH− i
dQ

dz8
1I − HI msz8dJ = 1Idsz − z8d , s33d

where all underlined quantities are 232 matrices in the

Nambu space with matrix elements 1Imn= f
dmn 0

0 dmn
g and

GI mnsz;z8d = FG↑,mnsz;z8d − Fnmsz8;zd

Fmnsz;z8d − G↓,nmsz8;zd
G , s34d

HI m,mnszd = F Km,mnszd dmnDmszd

dmnDm
p szd − Km,nmszd

G . s35d

The matrix elements of HI mszd are

HKm,mnst6d = Tmne
igmnstd

Dmst6d = Dmstd J s36d

for z= t6 on the horizontal branches and

HKm,mns− itd = Tmne
igmn − mdmn

Dms− itd = Dm

J s37d

for z=−it on the imaginary track. Since HI ms−itd is indepen-
dent of t, we write HI ms−itd=HI 0−msI with sI mn=sz1Imn and
sz the third Pauli matrix.

In the next section, we show that the solution of the equa-

tions of motion is equivalent to first solve the static

Bogoliubov-deGennes sBdGd equations and then their TD

version.

4. Keldysh components and Bogoliubov-de Gennes equations

We introduce the left and right contour evolution matrices

SI R/Lszd which satisfy

i
d

dz
SI Rszd = HI mszdSI Rszd , s38d

− i
d

dz8
SI Lsz8d = SI Lsz8dHI msz8d s39d

with boundary conditions SI R/Ls0−d=1I . The most general so-

lution of the equations of motion fEqs. s32d and s33dg can

then be written as

GI sz;z8d = SI Rszdfusz;z8dGI . + usz8;zdGI ,gSI Lsz8d s40d

with GI .−GI ,=−i1I and the contour Heaviside function

usz ;z8d=1 if z is later than z8 and zero otherwise. Equation

s40d is a solution for all matrices GI .=−i1I +GI ,. In order to

determine GI . or GI ,, we use the boundary conditions

GI s0−;z8d = − GI s− ib;z8d , s41d

GI sz;0−d = − GI sz;− ibd , s42d

which follow directly from the definitions fEqs. s27d–s29dg of
the NEGF. Using Eq. s40d, one finds GI s0− ;z8d=GI ,SI Lsz8d
and GI s−ib ;z8d=SI Rs−ibdGI .SI Lsz8d from which we conclude

that

GI , = − SI Rs− ibdGI .. s43d

Similarly, from Eq. s42d one finds

GI . = − GI ,SI Ls− ibd . s44d

Exploiting the fact that HI ms−itd=HI 0−msI is constant along

the imaginary track one readily realizes that SI R/Ls−ibd
=expf6bsHI 0−msI dg and hence

GI , =
i

1I + expfbsHI 0 − msI dg
. s45d

From the exact solution fEq. s40dg, we can extract any ob-

servable quantity at times t$0 and not only its limiting be-

havior at t→`. Below we calculate the different components

of the NEGF.

We introduce the eigenstates Cq, with eigenenergies Eq,

of the matrix HI 0−msI . The vector Cq= fuq ,vqg is a two-

dimensional vector in the Nambu space and, by definition,

satisfies the eigenvalue problem,

o
n

Tmne
igmnuqsnd + Dmvqsmd = sEq + mduqsmd , s46d

− o
n

Tnme
ignmvqsnd + Dm

p
uqsmd = sEq − mdvqsmd . s47d

Due to the presence of the pairing field, the components uq
and vq are coupled and the eigenstates Cq are a mixture of

one-particle spin-up electron states and spin-down hole

states. We will refer to the eigenstates Cq as bogolons. The

above equations have the structure of the static BdG equa-

tions which follow from the BCS approximation.48,49 In our

case, Eqs. s46d and s47d follow from SCDFT sRef. 43d and

therefore yield the exact equilibrium bond current and pair-

ing density provided that the exact KS phases and pairing

fields are used.

Inserting the complete set of eigenstates in Eq. s40d and

taking into account Eq. s45d, we find the following expansion

for the NEGF:

GI sz;z8d = io
q

SI RszdCqfusz;z8df.sEqd

+ usz8;zdf,sEqdgCq
†SI Lsz8d , s48d

where f,svd=1 / f1+expsbvdg is the Fermi function and

f.svd= f,svd−1. Taking z and z8 on the real axis but on
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different branches of the Keldysh contour, we can extract the

lesser and greater component of the NEGF. We first notice

that for z= t6, the contour evolution operators reduce to the

standard evolution operators, i.e., SI Rst6d=SI std and SI Lst6d
=SI †std with

i
d

dt
SI std = HI stdSI std, SI s0d = 1I s49d

and HI std=HI mst6d, see Eq. s36d. Then, in terms of the

evolved states Cqstd=SI stdCq with components Cqstd
= fuqstd ,vqstdg we find

GI +st;t8d ; GI st7;t68 d = FG↑
+st;t8d − F_,Tst8;td

F+st;t8d − G↓
_,Tst8;td

G
= io

q

f+sEqdFuqstduq†st8d uqstdvq
†st8d

vqstduq
†st8d vqstdvq

†st8d
G , s50d

where the superscript T in F_,T and G↓
_,T denotes the trans-

pose of the matrix, see also Eq. s34d. The functions uqstd and
vqstd can be determined by solving a coupled system of first-

order differential equations. From Eq. s49d it follows that

i
d

dt
uqsm,td = o

n

Tmne
igmnstduqsn,td + Dmstdvqsm,td , s51d

i
d

dt
vqsm,td = − o

n

Tnme
ignmstd

vqsn,td + Dm
p stduqsm,td ,

s52d

which have the structure of the TD BdG equations.26,50 As in

the static case, however, the solution of Eqs. s51d and s52d
yields the exact densities and not their BCS approximation.

We notice that for the KS system to reproduce the time-

independent densities of an interacting system in equilibrium

it must be

Dmstd = e−2imtDm s53d

for which one finds the solutions uqstd=e−isEq+mdtuq and

vqstd=e−isEq−mdt
vq. The above time dependence of the pairing

field is the same as in the BCS approximation.

Using Eq. s50d the retarded sRd and advanced sAd NEGF
are

GI R/Ast;t8d ; 6 us6t 7 t8dfGI .st;t8d − GI ,st;t8dg

= 7 ius6t 7 t8dSI stdSI †st8d s54d

with components

GI mn
R/Ast;t8d = FG↑,mn

R/A st;t8d − Fnm
A/Rst8;td

Fmn
R/Ast;t8d − G↓,nm

A/R st8;td
G . s55d

It follows that GI +st ; t8d can also be written as

GI +st;t8d = GI Rst;0dGI +s0;0dGI As0;t8d . s56d

D. Application to quantum transport

We here apply the above formalism to systems described

by a=1, . . . ,N bulk superconducting leads in contact with a

central region C which can be, e.g., a quantum dot, a mol-

ecule, or a nanostructure. Assuming no direct coupling be-

tween the leads the Hamiltonian HI m is written in terms of its

projections on different subspaces as

HI m = o
a=1

N

HI m,aa + HI m,CC + o
a=1

N

sHI m,aC + HI m,Cad , s57d

where HI m,aa describes the ath lead, HI m,CC the nanostructure

C and HI m,aC+HI m,Ca the coupling between leads a and C. We

assume region C to be a constriction so small that the bulk

equilibrium of the leads is not altered by the coupling to C.

Furthermore, we consider time-dependent perturbations

which correspond to the switching on of a longitudinal elec-

tric field in lead a. The time to screen the external electric

field in the leads is in the plasmon time-scale region. If we

are interested in external fields which vary on a much longer

time scale it is reasonable to expect that the leads remain in

local equilibrium. Therefore, the coarse-grained time evolu-

tion of the system can be described by the following TD

Hamiltonian HI mst6d=HI std:

HI aastd = exps− imtszdHI aas0dexpsimtszd , s58d

HI aCstd = expSiE
0

t

dt̄Uast̄dszDHI aCs0d , s59d

HI Castd = fHI Castdg†. s60d

We do not specify the time dependence of HI CCstd since it can
be any, see below. The TD field Uastd is the sum of the

external and Hartree field and is homogeneous, i.e., it does

not carry any dependence on the internal structure of the

leads, in accordance with the above discussion. It has been

shown that for macroscopic leads the assumption of homo-

geneity is verified with rather high accuracy.51

As for the case of normal leads, the equations of motion

for the Keldysh-Green’s function can be solved by an em-

bedding procedure. We define the uncontacted Green’s func-

tion gI which obeys the equations of motion fEqs. s32d and

s33dg with HI m,aC=HI m,Ca=0 and the same boundary condi-

tions as GI . Then, the equation of motion for GI CC projected

onto regions CC takes the form

Hi dW
dz

1ICC − HI m,CCszdJGI CCsz;z8d

= 1ICCdsz − z8d +E dz̄SI sz; z̄dGI CCsz̄;z8d , s61d

where the embedding self-energy is expressed in terms of gI
as

SI sz̄; z̄8d = o
a=1

N

SI asz̄; z̄8d = o
a=1

N

HI m,Casz̄dgIaasz̄; z̄8dHI m,aCsz̄8d .

s62d

The above equation of motion is defined on the Keldysh

contour of Fig. 1. Converting Eq. s61d in equations for real

times results in a set of coupled equations known as
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Kadanoff-Baym equations34,52–56 recently implemented to

study transient responses of interacting electrons in model

molecular junctions.51,57 The use of the Kadanoff-Baym

equations to address transient and relaxation effects in other

contexts has been pioneered by Schäfer,58 Bonitz et al.,59 and

Binder et al.60

The importance of using an uncontacted Green’s function

gI with boundary conditions fEqs. s41d and s42dg for a proper
description of GI +st ; t8d at finite times has been discussed

elsewhere in the context of transient regimes36,51 and it has

been shown that it leads to coupled equations between the

Keldysh-Green’s function with two real times and those with

one real and one imaginary time.

In the next section, we propose a wave-function-based

propagation scheme to solve Eq. s61d for TD Hamiltonians

of the form fEqs. s58d–s60dg.

III. NUMERICAL ALGORITHM

We consider semi-infinite periodic leads with a supercell

of dimension Ncell
a for lead a. The projected Hamiltonian

HI 0,aa=HI aas0d can then be organized as follows:

HI 0,aa = 3
hI a tIa 0Ia . . .

tIa
† hI a tIa . . .

0Ia tIa
† hI a . . .

. . . . . . . . . . . .
4 , s63d

where hI a is the 2Ncell
a 32Ncell

a Nambu Hamiltonian of the

supercell with matrix structure,

hI a = F ea Da

Da
p − ea

T G s64d

while tIa describes the contact between two nearest-neighbor
supercells. Since the pairing field is local the off-diagonal
terms of tIa are zero and therefore, the general structure of the
hopping matrix is

tIa = F ta 0a

0a − ta
T G . s65d

The matrices ea, Da, and ta in hI a and tIa have the dimension
of the unit cell, i.e., Ncell

a 3Ncell
a . In particular, Da is a diago-

nal matrix.

A. Calculation of initial states

Given the above structure of the leads Hamiltonian, the
eigenstates of HI 0−msI can be grouped in scattering states
with incoming bogolons from lead a=1, . . . ,N and Andreev
bound states sABSsd.

1. Scattering states

The lead a is characterized by energy bands En
aspd with

n=1, . . . ,2Ncell
a and pP s0,pd. For a given p, the energies

En
aspd are the solutions of the eigenvalue problem

shI a + tIae
ip + tIa

†
e−ip − msI adUnp

a = En
aspdUnp

a s66d

with Unp
a the Nambu-Bloch eigenvectors. We write the index

of the localized orbital wm as m=s , j ,a; here s labels the

orbital within the supercell and j the supercell and a the lead.

The index s runs between 1 and Ncell
a while the supercell

index j=0, . . . ,`. The scattering state for an incoming bogo-

lon from lead a has the general form

Cnp
a smd =5

Unp
a ssde−ipj + o

r

Rnp,r
aa Wnp,r

aa ssdeiqnp,r
aa

j
m = s, j,a

Cnp,C
a smd m P C

o
r

Tnp,r
ab Wnp,r

ab ssdeiqnp,r
ab

j
m = s, j,b Þ a

6 s67d

with reflection coefficients R and transmission coefficients T.

The momenta qnp,r
ab sfor all leads b including b=ad are asso-

ciated to states with energy E=En
aspd and can therefore be

obtained from the roots of

DetfhI b + tIbe
iq + tIb

†
e−iq − msI b − E1Ibg = 0. s68d

The above equation admits, in general, complex solutions for

q. In Eq. s67d, the sums over r run over real solutions q for

which the sign of the Fermi velocity vr
bsqd=]Er

bsqd /]q is

opposite to the sign of the Fermi velocity vn
aspd of the in-

coming bogolon and over all complex solutions q for which

Imfqg.0 sevanescent statesd. Once the qnp,r
ab are known the

Bloch state Wnp,r
ab is simply the eigenvector with zero eigen-

value of the matrix hI b+ tIbe
iqnp,r

ab

+ tIb
†e−iqnp,r

ab

−msI b−E1Ib. For

the calculation of the reflection and transmission coefficients

as well as of the amplitude Cnp,C
a smd in the central region, we

extended a recently proposed waveguide approach.61 The

method is based on projecting the Schrödinger equation

sHI 0−msI dC=EC onto the central region and onto all the

supercells in contact with the central region, i.e., with j=0.

The projection onto a j=0 supercell leads to an equation

which couples the amplitude of C in j=0 with that in j=1.

Exploiting the analytic form of the eigenstate in Eq. s67d, the
amplitude in the leads can entirely be expressed in terms of

the unknown R’s and T’s for all j. In this way, the equations

can be closed and the problem is mapped into a simple linear
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system of equations for the unknown Rnp,r
ab , Tnp,r

ab , and

Cnp,C
a smd.

2. Andreev bound states

The presence of a gap in the spectrum of the supercon-

ducting leads may lead to the formation of localized ABS

within the gap. The procedure to calculate the ABS is

slightly different from the one previously presented since the

ABS energy is not an input parameter and the ABS state is

normalized to 1 over the whole system. The energy Eb of an

ABS Cb is outside the lead continua. Projecting the

Schrödinger equation sHI 0−msI dCb=EbCb onto different re-

gions and solving for the projection Cb,C in region C, one

finds sHI 0,CC
eff sEbd−msI CCdCb,C=EbCb,C, where

HI 0,CC
eff sEd = HI 0,CC + o

a

HI 0,Ca

1

E − sHI 0,aa − msI aad
HI 0,aC.

s69d

The ABS energies Eb can then be extracted from the roots of

DetfHI 0,CC
eff sEd−msI CC−E1ICCg=0 and the eigenvector with

zero eigenvalue of HI 0,CC
eff sEbd−msI CC−Eb1ICC is proportional

to the projection Cb,C of the ABS in region C. We call Cb the

unknown constant of proportionality. As for the scattering

states, we can construct the ABS everywhere in the system

according to

Cbsmd =Ho
r

Bb,r
a Wb,r

a ssdeiqb,r
a

j
m = s, j,a

Cb,Csmd m P C
J . s70d

The momenta qb,r
a and Bloch states Wb,r

a are calculated in the

same way as for the scattering states. By definition all mo-

menta have a finite imaginary part and the sum in Eq. s70d
runs over those with a positive imaginary part. The constants

Bb,r
a can be simply obtained by projecting the Schrödinger

equation sHI 0−msI dCb=EbCb onto the supercells in contact

with region C, i.e., with j=0. The resulting equation couples

the amplitude of Cb in j=0 with that in j=1 and with the

known amplitude CbCb,Csmd. Exploiting the analytic form of

Cb in the leads the amplitude in j=1 can entirely be ex-

pressed in terms of the constants CbBb,r
a thus yielding a linear

system of equations for each lead. Once the CbBb,r
a are

known the constant of proportionality Cb is fixed by impos-

ing that the ABS is normalized to 1. This can be easily done

since the sums over j are geometrical series.

B. Embedded Crank-Nicholson propagation scheme

To propagate the generic eigenstate C of HI 0−msI , we
extend the embedded Crank-Nicholson37,38 scheme to super-

conducting leads. The equations of motion fEqs. s51d and

s52dg can be written in a compact form as

i
d

dt
Cstd = HI stdCstd, Cs0d = C , s71d

where the components of the TD Hamiltonian are given in

Eqs. s58d–s60d. We first perform the gauge transformation

Castd=expf−imsI aatgFastd for the projection of the state C

onto lead a and CCstd=FCstd for region C. The state Fstd
obeys the equation,

i
d

dt
Fstd = HĨ stdFstd, Fs0d = C s72d

with

HĨ aastd = HI aas0d − msI aa, s73d

HĨ aCstd = expFiSmt + E
0

t

dt̄Uast̄dDsI aaGHI aCs0d , s74d

and HĨ CCstd=HI CCstd. The advantage of the gauge-

transformed equations is that the lead Hamiltonian is now

independent of time. We discretize the time as tm=2md and

define Fsmd=Fstmd and HĨ smd=
1

2
fHĨ stm+1d+HĨ stmdg. The differ-

ential operator in Eq. s72d is then approximated by the Cay-

ley propagator,

s1I + idHĨ smddFsm+1d = s1I − idHĨ smddFsmd. s75d

The above propagation scheme is known as Crank-Nicholson

algorithm and it is norm conserving and accurate up to sec-

ond order in d. As the matrix HĨ is infinite dimensional, the

direct implementation of Eq. s75d is not possible. A signifi-

cant progress can be done using an embedding procedure

which, as we shall see, entails perfect transparent boundary

conditions at the interfaces between region C and leads a.
Projecting Eq. s75d onto lead a and iterating one finds

Fa
sm+1d = gIaa

m+1Fa
s0d −

id

1Iaa + idHĨ aa

o
j=0

m

gIaa
j HĨ aC

sm−jd

3sFC
sm+1−jd + FC

sm−jdd , s76d

where we have defined the propagator

gIaa =
1Iaa − idHĨ aa

1Iaa + idHĨ aa

, s77d

and made use of the fact that HĨ aastd;HĨ aa is time indepen-

dent. The time dependence of the contacting Hamiltonian

can be easily extracted from Eq. s74d and reads

HĨ aC
smd =

expsima
sm+1d

sI aad + expsima
smd

sI aad
2

HĨ aCs0d , s78d

where we have defined

ma
smd = mtm + E

0

tm

dt̄Uast̄d . s79d

At this point comes a crucial observation which allows for

extending the propagation scheme of Refs. 37 and 38 to the

superconducting case. Since the pairing field is local in the

chosen basis the off-diagonal part of the contacting Hamil-

tonian is zero and hence HĨ CasI aa=sI CCHĨ Ca. It follows that

Eq. s78d can also be rewritten as
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HĨ aC
smd = HĨ aCs0d

expsima
sm+1d

sI CCd + expsima
smd

sI CCd
2

; HĨ aCs0dzIa
smd, s80d

which implicitly define the matrices zIa
smd= szIa

smddp. Next we

project Eq. s75d onto region C and use Eq. s76d to express

the Fa at a given time step in terms of the FC at all previous

time steps. The resulting equation is

s1ICC + idHĨ eff
smddFC

sm+1d = s1ICC − idHĨ eff
smddFC

smd + o
a

sSa
smd +Ma

smdd

s81d

and contains only quantities with the dimension of region C.

We emphasize that Eq. s81d is an exact reformulation of the

original Eq. s75d but it has the advantage of being imple-

mentable. Indeed, exploiting the result in Eq. s80d the bound-
ary term Sa

smd and memory term Ma
smd read

Sa
smd = − idzIa

smdHĨ Cas0dgIaa
m s1Iaa + gIaadFa

s0d, s82d

Ma
smd = − d2o

j=0

m−1

zIa
smdsQI a

sj+1d + QI a
sjddzIa

sm−1−jdsFC
sm−jd + FC

sm−1−jdd

s83d

while the effective Hamiltonian is given by

HĨ eff
smd = HĨ CC

smd − ido
a

zIa
smdQI a

s0dzIa
smd, s84d

where the embedding matrices QI a
smd have twice the dimen-

sion of region C and are defined according to

QI a
smd = HĨ Cas0d

s1Iaa − idHĨ aadm

s1Iaa + idHĨ aadm+1
HĨ aCs0d . s85d

In Appendix A, we describe a recursive scheme to calculate

the embedding matrices. In Appendix B, we further show

that the boundary term Sa
smd can be expressed in terms of the

QI a’s thus rendering Eq. s81d a well-defined equation for time

propagations.

In the next section, we apply the numerical scheme to

UF-JNJ model systems and obtain results for the TD densi-

ties and currents.

IV. REAL-TIME SIMULATIONS OF S-D-S JUNCTIONS

Due to the vast phenomenology of S-D-S junctions it is

not possible to address these systems in a single work. Fur-

thermore, the analysis of the time-dependent regime is gen-

erally more complex than that in the Josephson regime and it

is therefore advisable to first gain some insight by investigat-

ing simple cases. Our intention in this section is to demon-

strate the feasibility of the propagation scheme and to present

genuine TD properties of simple model systems.

We consider a tight-binding chain sregion Cd with nearest-

neighbor hopping tC and on-site energy eC connected to a left

sLd and right sRd wideband leads. The a=L ,R lead is de-

scribed by a semi-infinite tight-binding chain with nearest-

neighbor hopping ta and a constant pairing field Da, and is

coupled to the a end point of the central chain through its

surface site with a hopping tCa= taC. The system is initially in

equilibrium at temperature T=0 and chemical potential m
=0 and driven out of equilibrium by a TD bias voltage Uastd
applied to lead a at positive times. From Sec. II D, the

Hamiltonian for this kind of systems read Ĥstd=oafĤaastd
+ ĤaCstd+ ĤCastdg+ ĤCC, where

Ĥaastd = tao
j=0

`

o
s

sĉ j+1sa
†

ĉ jsa + H.c.d

+ se−2imtDaĉ j↑a
†

ĉ j↓a
† + H.c.d s86d

describes the lead a=L ,R,

ĤLCstd = tLCe
ie0
t
dt8ULst8do

s

ĉ0sL
†

ĉ0s + H.c., s87d

ĤRCstd = tRCe
ie0
t
dt8URst8do

s

ĉ0sR
†

ĉNs + H.c. s88d

accounts for the coupling between region C and the leads,

and

ĤCC = tCo
m=0

N−1

o
s

sĉm+1s
†

ĉms + H.c.d + eCo
m=0

N

o
s

ĉms
†
ĉms

s89d

is the Hamiltonian of the chain with N+1 atomic sites. The

currents JLstd;J0L,0std and JRstd;JN,0Rstd through the bonds

connecting the chain to the left and the right leads are ob-

tained from Eqs. s30d and s50d and read

JLstd = − itLCe
igLCstdFo

q

f,sEqduqs0L,tduq
ps0,td

− o
q

f.sEqdvqs0,tdvq
ps0L,tdG + H.c., s90d

JRstd = − itRC
p
e−igRCstdFo

q

f,sEqduqs0,tduq
ps0R,td

− o
q

f.sEqdvqs0R,tdvq
ps0,tdG + H.c., s91d

where gaCstd= ie0
t dt8Uast8d and the sum over q runs over all

ABS and scattering states. Similarly, the pairing density

Pmstd on an arbitrary site of the chain is obtained from Eq.

s31d and s50d and reads

Pmstd = o
q

f,sEqduqsm,tdvq
psm,tde2ieCt. s92d

We will write the pairing field as Da=jae
ixaD and mea-

sure energies in units of D, times in units of " /D, and cur-

rents in units of ueuD /", with ueu the absolute charge of the

carriers. Since we consider wideband leads with ta@ taC, tC
and the chemical potential is set to zero the results depend

only on the ratio Ga;2taC
2

/ ta stunneling rated and not on taC
and ta separately. In the following, we therefore specify the
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value of Ga only. In practical calculations, the longitudinal

vector pP s0,pd of the scattering states, see Eq. s67d, is dis-
cretized with Np mesh points and only states with energy

within the range sm−L ,m+Ld are propagated in time. We

will call Np,a the number of scattering states from lead a that

are propagated. The cutoff L is chosen about an order of

magnitude larger than the typical energy scales of the prob-

lem, i.e., Ua, Ga, Da, tC, and eC.

A. Single-level quantum-dot model

The single-level quantum dot sQDd model corresponds to

a central chain with only one atomic site sN=0d. For DL

=DR=0 sN-QD-Nd, the TD response of this system has been

investigated by several authors and an analytic formula for

the TD current is also available.36,62,63 Scarce attention, how-

ever, has been devoted to the system with one superconduct-

ing lead29 sN-QD-Sd and to the best of our knowledge, the

only available results when both leads are superconducting

sS-QD-Sd have been published in Ref. 30.

1. N-QD-S model under dc bias

We first consider the N-QD-S case schematically illus-

trated in Fig. 2sad. To highlight the different scattering

mechanisms, we shift the central level by eC=0.5, choose
weak couplings to the leads GL=GR=0.2, and drive the sys-

tem out of equilibrium by applying four different biases UL

=0.3,0.6,0.9,1.2 to the left normal lead. For biases in the

subgap region, i.e., UL,DR=1, transport is dominated by

Andreev reflections sARsd. In Fig. 2sbd, we show the currents

JLstd and JRstd of Eqs. s90d and s91d. For UL=0.3,eC, the
AR are strongly suppressed since electrons at the left elec-

trochemical potential mL=UL have just enough energy to en-

ter the resonant window seC−2G ,eC+2Gd, where 2G=GL

+GR. Resonant AR can occur for UL.eC and constitute the

dominant mechanism for electron tunneling. This is clearly

visible in the second panel of Fig. 2sbd where the steady-state
values of JR for UL=0.6 and UL=0.9 are approximatively the

same. At larger biases UL=1.2.DR electrons can also tunnel

via standard quasiparticle scattering and the steady-state cur-

rent increases. This interpretation is confirmed by the behav-

ior of the pairing density P0std on the QD, third panel of Fig.

2sbd. For times up to ,5, the pairing density decreases since

pre-existent Cooper pairs in lead R move away from the QD.

However, while uP0stdu remains below its equilibrium value

at UL=0.3, for all other biases, UL.eC, uP0stdu increases af-
ter t,5, meaning that a Cooper pair is forming at the inter-

face. We also notice that the values of uP0st→`du for UL

=0.9 and UL=1.2 are very close while the corresponding

currents JR differ appreciably. This is again in agreement

with the fact that electrons with energy larger than DR do not

undergo AR and thus no extra Cooper pairs are formed. Fi-

nally we observe that the transient regime is longer in the

N-QD-S case than in the N-QD-N case, see inset in panels 2

and 3 of Fig. 2sbd, as also pointed out in Ref. 29.

2. S-QD-S model under dc bias

We now turn to the more interesting case in which the QD

is connected to a left and right superconducting lead sS-QD-

Sd, see Fig. 3sad. We focus on symmetric couplings GL=GR

=G=1 and on pairing fields DL=DRe
ix=eix with the same

magnitude but different phase. This system always support

two ABSs in the gap. Their energy can be obtained analyti-

cally from the solution of DetfHI 0,CC
eff sEd−msI CC−E1ICCg=0

ssee Sec. III A 2d which, in terms of the dimensionless vari-

ables x=E /D, g=G /D, and e= seC−md /D, reads

x2S1 + g

Î1 − x2
D2 − e2 −

a2g2

1 − x2
= 0, s93d

where a=Î1+cos x
2

and varies in the range s0,1d. In Fig. 3sad,
we plot the solutions of Eq. s93d as a function of x for eC
=m=0. In equilibrium and at zero-temperature one ABS is

fully occupied and the other is empty. At time t=0, a con-

stant bias UL is applied to the left lead. In Fig. 3sbd, we
display the TD current at the left interface JLstd for x=0 and
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FIG. 2. sColor onlined sad Schematic of the transport setup. A

single-level QD with on-site energy «C=0.5 is weakly connected

sGL=GR=0.2d to a left normal lead and a right superconducting

lead. In equilibrium, both temperature T and chemical potential m

are zero. The system is driven out of equilibrium by a steplike

voltage bias UL=0.3,0.6,0.9,1.2 in the normal lead. For UL,DR,

the dominant scattering mechanism is the AR in which an electron

is reflected as a hole and a Cooper pair is formed in lead R. sbd
Time-dependent current at the left interface sfirst paneld, right inter-
face ssecond paneld, and absolute value of the pairing density on the

QD sthird paneld. The insets show the TD current for the same

parameters but DR=0, i.e., for a normal R lead. The results are

obtained with a time step d=0.05, cutoff L=6, and a number of

scattering states Np,L=1070 and Np,R=1056.
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UL=3,2 ,1. After a transient, the current oscillates in time

with period TJ=2p / s2ULd, as expected. For UL.2, the

S-QD-S system behaves similarly to a macroscopic Joseph-

son junction with an almost pure monochromatic response,

albeit the average value Jdc of the current over a period is

different from zero. For UL=1,2D, i.e., in the subgap re-

gion, the transient regime becomes much longer and JLstd
deviates from a perfect monochromatic function. At UL=1,

the dominant scattering mechanism is the single AR.

As discussed in Ref. 15, the presence of the resonant level

modifies substantially the Jdc−VsV=UL−URd characteristic

and for G=1 the subharmonic gap structure is almost entirely

washed out. However, a very rich structure is observed in the

TD current. In Fig. 3scd, we display JLstd for biases UL

=0.5,0.4,0.3,0.2. The charge carriers undergo multiple AR

sMARd before acquiring enough energy and escaping from

the QD. The dwelling time increases with decreasing bias

and the transient current has a highly nontrivial behavior

before the Josephson regime sets in. From the simulations in

Fig. 3scd at bias UL=0.2, the propagation time t=250 is not

sufficient for the development of the Josephson oscillations.

We also observe that the smaller is the bias the larger is the

contribution of high-order harmonics, which is in contrast

with one would naively expect from linear-response theory.

In Fig. 4sad, we display the Fourier transform of JLstd
−Jdc in the Josephson regime. Replica of the main Josephson

frequency vJ=2UL are clearly visible for UL,D. The values
of Jdc as obtained from time propagation are reported in Fig.

4sbd and are consistent with a smeared subharmonic gap

structure.

From the curves JLstd, it is not evident how to estimate the

duration of the transient time. We found useful to look at the

contribution of the ABS, JL,ABS, to the total current JL since

JL,ABSst→`d=0. This quantity is evaluated from Eq. s90d by
restricting the sum over q to the ABS and is shown in Fig.

4scd. ABS play a crucial role in the relaxation mechanism as

we shall see in the next section.

3. S-QD-S model under dc pulses

As mentioned in Sec. I, the possibility of employing UF-

JNJ in future electronics rely on our understanding of their

TD properties. In the previous section, we studied the tran-

sient behavior of a S-QD-S system under the sudden switch

on of an applied bias. Equally important is to study how the

system responds when the bias is switched off. We therefore

consider the same S-QD-S model as before with GL=GR=1,

eC=0, and DL=DR=1 initially in equilibrium at zero tem-

perature and chemical potential. At time t=0, a constant bias

UL=1 is applied to lead L until the time toff at which the bias

is switched off. How does the system relax? In Fig. 5, we

show the current JR at the right interface as well as the den-

sity n0 and pairing density uP0u on the QD for switch-off

times toff
snd=5p+np /8 with n=0,1 ,2 ,3 ,4. Despite the fact

that the switch-off times are all very close ftoff
s0d,15.71 and

toff
s4d,17.28g, the system reacts in different ways and actually
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FIG. 3. sColor onlined sad Schematic of the S-QD-S model with

GL=GR=1.0, DL=DR=1, and eC=0. This system admits two ABS in

the gap. The ABS energy depends on the superconducting phase

difference x as illustrated in the inset. sbd and scd Time-dependent

current JLstd at the left interface as a function of time for sbd UL

=3.0,2.0,1.0 fthe curves corresponding to bias UL=n.0 are shifted

upward by 0.3sn−1dg and scd UL=0.5,0.4,0.3,0.2 fthe curves cor-

responding to bias UL=0.n are shifted upward by 0.6sn−2dg. The
results are obtained with a time step d=0.05, cutoff L=12.1, and a

number of scattering states Np,L=Np,R=768 for panel sbd and d
=0.05, L=4, and Np,L=Np,R=788 for panel scd.
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shifted upward by 2.8. sbd Values of the average current for biases

in the subgap region. scd ABS contribution to the current JLstd for

biases UL=0.2,0.3,0.4,0.5,0.6 fthe curves corresponding to bias

UL=0.n are shifted upward by 0.8sn−2dg. The numerical param-

eters are the same as in Fig. 3.
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relaxes only in one case. The strong dependence on toff is due

to the two ABS in the gap. Similarly to what happens in

normal systems64 the asymptotic st→`d form of the density

on the QD is

n0std − n0,cont , o
ij

f ij coshfeABS
sid − eABS

sjd gtj , s94d

where eABS
sid , i=1,2, are the ABS eigenenergies of the Hamil-

tonian after the bias has been switched off and n0,cont is the

contribution of the continuum states to the density. The co-

efficients f ij= f ji are matrix elements of the Fermi function

ffĤs0dg calculated at the equilibrium Hamiltonian and de-

pend on the history of the applied bias.65,66 Contrary to the

normal case, however, the energy of the ABS depends on

when the bias is switched off since after a time toff the phase

difference x changes from zero to 2ULtoff. This fact together

with Eq. s94d explains the persistent oscillations at different

frequencies. Indeed xsnd=2ULtoff
snd=np /4 and from Fig. 3sad,

we see that feABS
s1d sxsndd−eABS

s2d sxsnddg varies from ,1.08 to

zero when n varies from zero to 4. The amplitude of the

oscillations as well as the average value of the density n0,

however, do not depend only on x but also on the history of

the applied bias. Two different biases ULstd and UL8std yield-
ing the same phase difference x=2e0

toffdtULstd
=2e0

toffdtUL8std give rise to different persistent oscillations,

albeit with the same frequency.

From the results of this section, we conclude that for de-

vices coupled to superconducting leads a small difference in

the switch-off time of the bias can cause a large difference in

the relaxation time of the device. This property may be ex-

ploited to generate zero-bias ac currents of tunable fre-

quency.

4. S-QD-S model under ac bias

The time-propagation approach has the merit of not being

limited to steplike biases as it can deal with any TD bias at

the same computational cost. Of special importance is the

case of ac biases where a microwave radiation Ur sinsvrtd is
superimposed to a dc signal V=UL−UR. The study of UF-

JNJ in the presence of microwave radiation started with the

work of Cuevas et al.67 who predicted the occurrence of

subharmonic Shapiro spikes in the Jdc−V characteristic of

superconducting point contacts. Later on, Zhu et al.68 ex-

tended the analysis to the S-QD-S model and discuss how

the ABS modifies the Jdc−V characteristic. The replicas of

the Shapiro spikes have been experimentally observed69 and

can be explained in terms of photon-assisted multiple An-

dreev reflections. Using a generalized Floquet formalism,

one can show that in the long-time limit,67

JLstd = o
mn

Jm
n sV,g,vrde

ismvJ+nvrdt, s95d

where g=Ur /vr and vJ=2V is the Josephson frequency. The

calculation of Jm
n is, in general, rather complicated and to the

best of our knowledge, the full TD profile of JLstd as well as
the duration of the transient time before the photon-assisted

Josephson regime sets in have not been addressed before.

We here consider the S-QD-S model with GL=GR=1, «C

=0, and DL=DR=1 under a dc bias and in the presence of a

superimposed microwave radiation ULstd=UL+Ur sinsvrtd
and UR=0. In Fig. 6sad, we display the TD current at the left

interface for fixed g=Ur /vr=0.05 and different values of the

frequency vr=0.5,1.08,1.5. The first striking feature is the

occurrence of a transient resonant effect at vr=1.08,vABS

;eABS
s1d −eABS

s2d . At the resonant frequency, the amplitude of

the oscillations increases linearly in time till a maximum

value ,0.3. The Fourier decomposition snot shownd reveals
that the peak at v=1.08 splits into two peaks, one above and

one below 1.08, which is consistent with the observed beat-

ing. The effect is absent at larger svr=1.5d and smaller svr

=0.5d frequencies for which the amplitude of the oscillations

remains below 0.05 and two main harmonics, one at vr and

the other at vABS, are visible in the Fourier decomposition

snot shownd. The peak at v=vABS is due to a transient exci-

tation with a long lifetime and cannot be described using

Floquet-based approaches.

The ABS plays a crucial role in determining the TD pro-

file of JL at the resonant frequency. The total current JLstd
=JL,contstd+JL,ABSstd is the sum of the current JL,cont coming

from the evolution of the continuum states and the ABS cur-

rent JL,ABSstd. These two currents are shown in Fig. 6sbd
from which it is evident that ABS carry an important amount

of current not only in the dc Josephson effect29,70 but also in

the transient regime. In Fig. 6scd, we show the pairing den-

sity on the QD for the resonant frequency vr=1.08.

In the presence of an external bias, the ABS contribute to

the current only in the transient regime. The duration of the
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FIG. 5. sColor onlined Time-dependent current at the right inter-

face JR sfirst paneld as well as the density n0 ssecond paneld and

pairing density uP0u sthird paneld on the QD. The curves from bot-

tom to top corresponds to a switch-off time toff
snd=5p+np /8, with

n=0,1 ,2 ,3 ,4. Since the bias is UL=1, the accumulated phase dif-

ference xsnd at the end of the pulse is xsnd=2toff
snd=np /4. For the

switch-off time toff
snd, the curves of JR are shifted upward by 0.3n,

those of n0 by 0.5n, and those of uP0u by 0.2n. The results are

obtained with a time step d=0.05, cutoff L=12.1, and a number of

scattering states Np,L=Np,R=768.
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transient is investigated in Fig. 7 where we show JR,ABS for

dc biases with a superimposed microwave radiation de-

scribed by ULstd=UL+Ur sinsvrtd, with Ur=0.05vr, vr

=1.08, and UL=0.0,0.03,0.1,0.3. The interplay between the

ac Josephson effect and the resonant microwave driving

leads to complicated TD patterns for small UL. Increasing UL

the lifetime of the quasi-ABS decreases resulting in a fast

damping of the oscillations, see Fig. 7 with UL=0.3.

B. Long atomic chains

We consider a chain of N+1=21 atomic sites with on-site

energy eC=0 and nearest-neighbor hopping tC=1, see Eq.

s89d, symmetrically coupled, GL=GR=G, to superconducting

electrodes with uDLu= uDRu=D. In the limit of long chains, one

can prove that the current phase relation sat zero biasd is

linear if tC=G /2.29,70 This is the so-called Ishii’s sawtooth

behavior71 and is due to perfect AR. To better visualize the

MAR in the transient regime we therefore choose tC=G /2. In

equilibrium, there are 16 ABS in the gap. At time t=0, the

system is driven out of equilibrium by a dc bias UL applied

to lead L.

In Fig. 8, we display the contour plot of the currents

Jn,n+1std along the bond sn ,n+1d of region C as a function of

time for different values of UL=2D /4,2D /3,2D /2. The

MAR pattern is illustrated with black arrows. There is a

clear-cut transient scenario during which electrons undergo n

AR before the ac Josephson regime sets in, with n=UL /2D.
At every AR the current increases since the electrons are

mainly reflected as holes and holes as electrons. The same

numerical simulation in a normal system would have given a

current in region 1AR smaller than the current in region

0AR.

For the same system parameters, we also considered a dc

bias UL=0.8 for which the dominant scattering mechanism is

the third-order AR. The contour plot of the bond current is

displayed in the top-left panel of Fig. 9 and is similar to the

case UL=2D /3 of Fig. 8. A new scattering channel does,

however, open if a microwave radiation of appropriate fre-

quency is superimposed to UL. We therefore applied an ac

bias URstd=Ur sinsvrtd to lead R and choose vr to fulfill

2UL+vr=2D, i.e., vr=0.4. In Fig. 9, we report the contour

plot of the bond current for different values of Ur

=0.0,0.1,0.3,0.5. At UrÞ0, the right-going wave front re-

duces its intensity just after crossing the bond 10 due to

scattering against the left-going wave front from lead R, see

the characteristic l shape in the bottom-right panel. When

the right-going wave front hits the right interface the bond

current sharply increases. Furthermore, the larger is Ur the

shorter is the transient regime. This can be explained as fol-

lows. At large Ur, the dominant scattering mechanism is the

one in which an electron from lead L and energy UL is re-

flected as a hole and at the same time absorbs a photon of

energy vr. The energy of the reflected hole is 2UL+vr=2D,
no extra AR are needed for charge transfer and the photon-

assisted Josephson regime sets in.

V. CONCLUSIONS AND OUTLOOKS

In this paper, we proposed a one-particle framework and a

propagation scheme to study the TD response of UF-JNJ. By

projecting the continuum Hamiltonian onto a suitable set of

localized states, we reduced the problem to the solution of a

discrete system in which the electromagnetic field is de-

scribed in terms of Peierls phases. The latter provide the

basic quantities to construct a density-functional theory of

superconducting sand as a special case normald systems. We

proved that under reasonable conditions, the TD bond cur-

rent and pairing density of an interacting system driven out

of equilibrium by Peierls phases gstd can be reproduced in a

system of noninteracting KS electrons under the influence of

Peierls phases g8std and pairing field D8std and that g8std and
D8std are unique. We considered the KS system initially in

equilibrium at given temperature and chemical potential

when at time t=0, an external electromagnetic field is

switched on. To calculate the response of the system at times
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UL=0 and Ur=0.05vr with vr=0.5, fthe curve is shifted upward by

0.4g, and 1.5 fthe curve is shifted upward by 0.8g. sbd ABS and

continuum contribution to the total current in the resonant case vr

=1.08, Ur=0.05vr, and UL=0. scd Pairing potential on the QD for

the same parameters as in panel sbd. The results are obtained with a

time step d=0.05, cutoff L=4, and a number of scattering states
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t.0, we used a nonequilibrium formalism in which the nor-

mal and anomalous propagators are defined on an extended

Keldysh contour that includes a purely imaginary sthermald
path going from 0 to −ib. We showed that the solution of the

equations of motion for the NEGF are equivalent to first

solve the static BdG equations and then the TD BdG equa-

tions. It is worth emphasizing that in TDSCDFT, the BdG

equations do not follow from the BCS approximation and

that their solution yields the exact bond current and pairing

density of an interacting system provided that the exact KS

Peierls phases and pairing field are used.

For systems consisting of N superconducting leads in

contact with a finite region C and driven out of equilibrium

by a longitudinal electric field, a numerical algorithm is pro-
posed. The initial eigenstates are obtained from a recent gen-
eralized waveguide approach properly adapted to the super-

conducting case.61 The initial states are propagated in time

using an embedded Crank-Nicholson algorithm which is

norm conserving, accurate up to second order in the time

step and that exactly incorporates transparent boundary con-

ditions. The propagation scheme reduces to the one of Refs.

37 and 38 in the case of normal leads.

The method described in this work allows for obtaining

the TD current across an UF-JNJ and hence to follow the

time evolution of several AR until the Josephson regime sets

in. As a first calculation of this kind, we explored in detail

the popular single-level QD model in the weak and interme-

diate coupling regime. We demonstrated that the transient

time increases with decreasing bias and provided a quantita-

tive picture of the MAR. The rich structure of the transient

regime is due to the ABS which plays a crucial role in the

relaxation process. For dc pulses, we showed that ABS can

be exploited to generate zero-bias ac currents of tunable fre-

quency. Furthermore, irradiating the biased system with a

microwave field of appropriate frequency, the ABS give rise

to a long-living transient resonant effect. The transient re-

gime increases also with the length of the junction. We con-

sidered one-dimensional atomic chains coupled to supercon-

ducting leads under dc and ac biases. Here we showed that in

conditions of perfect AR there exists a clear-cut transient

scenario for MAR. For biases UL=2D /n, the dominant scat-

tering channel is the nth-order AR and the transient regime

lasts for about nN /vC, where N is the length of the chain and

vC the electron velocity at the Fermi level. Similar consider-

ations apply to photon-assisted MAR. A more careful analy-

sis of the transient regime is beyond the scope of the present

paper. However, such analysis is of utmost importance if the

ultimate goal of superconducting nanoelectronics is to use

these devices for ultrafast operations.

The TD properties presented in this work have been ob-

tained using rather simple, yet so far unexplored, models. A

more sophisticated description of the Hamiltonian is, how-

ever, needed for a quantitative parameter-free comparison

with experiments. Theoretical advances also involve the de-

velopment of approximate functionals for the self-consistent

FIG. 8. sColor onlined TD picture of MAR. A chain of 21 atomic sites is symmetrically connected with GL=GR=2tC=2 to two identical

superconducting leads with DL=DR=1. A dc bias UL=2D /n, n=4,3 ,2, is applied to lead L at time t=0. The panels show the contour plots

of the bond current Jn,n+1std across the atomic bonds of region C. The results are obtained with a time step d=0.05, cutoff L=4, and a

number of scattering states Np,L=Np,R=1232.

FIG. 9. sColor onlined Photon-assisted MAR in a chain of 21

atomic sites. The equilibrium parameters are the same as in Fig. 8.

An ac bias UR=Ur sinsvrtd in lead R is superimposed to a dc bias

UL=0.8 in lead L. The panels show the contour plots of the bond

current Jn,n+1std across the atomic bonds of region C for different

values of Ur=0.0,0.1,0.3,0.5 and vr=0.4. The results are obtained

with a time step d=0.05, cutoff L=4, and a number of scattering

states Np,L=Np,R=1232.
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calculation of the TD pairing potential and Peierls phases.
Self-consistent calculations have so far been restricted to
equilibrium S-D-S models with a pointlike attractive interac-
tion treated in the BCS approximation.72–75 For biased sys-
tems, however, the pairing potential and Peierls phases must
be treated on equal footing and a first step in this direction
would be the BCS approximation for the pairing field and the
Hartree-Fock approximation for the Peierls phases. More dif-
ficult is the study of UF-JNJ in the Coulomb-blockade re-
gime for which electron correlations beyond Hartree-Fock
must be incorporated.

Finally, the approach presented in this work is not limited
to two terminal systems. The coupling of the central region
to a third normal lead, or gate, allows for controlling the
Josephson current by varying the gate voltage.25,76,77 These
systems can be potentially used for fast switches and
transistors,78,79 and a microscopic understanding of their ul-
trafast properties is therefore necessary to optimize their
functionalities.

APPENDIX A: CALCULATION OF THE

EMBEDDING MATRICES

Without loss of generality we include few layers of each

lead in the explicitly propagated region C. Then, the embed-

ding matrix QI a
smd is zero everywhere except in the block of

dimension 2Ncell
a 32Ncell

a which is connected to the a lead.

Denoting with qI a
smd such nonvanishing block in QI a

smd, we

have

qI a
smd = tIaF s1Iaa − idHĨ aadm

s1Iaa + idHĨ aadm+1
G

0,0

tIa
† , sA1d

where the subscript s0,0d denotes the first diagonal block

ssupercell with j=0d of the matrix in the square brackets. We

notice that from Eq. s73d, the matrix HĨ aa is the same as the

matrix HI aas0d in Eq. s63d but with renormalized diagonal

blocks hI a=hI a−msI a. In order to compute the qI a
smd’s, we in-

troduce the generating matrix function,

qI asx,yd ; tIaF 1

x1Iaa + iydHĨ aa

G
0,0

tIa
† , sA2d

which can also be expressed in terms of continued matrix

fractions

qI asx,yd = tIa

1

x1Ia + iydhĨ a + y2d2tIa

1

x1Ia + iydhĨ a + y2d2tIa

1

. . . . . .
tIa
†

tIa
†

tIa
†

= tIa

1

x1Ia + iydhĨ a + y2d2qI asx,yd
tIa
† ; tIapI asx,ydtIa

† , sA3d

where the last step is an implicit definition of pI asx ,yd. The
qI a

smd’s are obtained from the generating matrix function as

qI a
smd = tIa

1

m!
UF− ]

]x
+

]

]y
Gm

pI asx,ydU
x=y=1

tIa
† = tIapI a

smdtIa
† .

sA4d

Using the identity
1

m!
f− ]

]x
+

]

]y
gmpI a

−1sx ,ydpI asx ,yd=0, we de-

rive the following recursive scheme:

s1Ia + idhĨ adpI a
smd = s1Ia − idhĨ adpI a

sm−1d − d2o
k=0

m

sqI a
skd + 2qI a

sk−1d

+ qI a
sk−2ddpI a

sm−kd sA5d

with pI a
smd=qI a

smd=0 for m,0. The above relation can be used

to calculate qI a
smd provided that all pI a

skd are known for k,m.

To obtain pI a
s0d, we can use Eq. sA3d with x=y=1 in which the

continued fraction is truncated after a number Nlevel of levels.

Convergence can be easily checked by increasing Nlevel.

APPENDIX B: CALCULATION OF THE

BOUNDARY TERM

From Eq. s81d, we see that in order to propagate an eigen-

state of HI 0−msI we need to know the boundary term defined

in Eq. s82d. The state Fs0d can be either a scattering state or

an ABS. As shown in Sec. III A, the projection onto lead a
of a generic eigenstate with energy E can be written as a

linear combination of states of the form

Fk
asm = s, j,ad = Zk

assdeikj , sB1d

where the amplitudes Zk
a satisfies the eigenvalue equation,

shI a + tIae
ik + tIa

†
e−ik − msI adZk

a = EZk
a. sB2d

In the following, we show how to compute the action of the

operator HĨ Cas0dgIaa
m s1Iaa+gIaad on Fk

a. We define the Nambu

vector in region C,
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FC,k
asmd ; HĨ Cas0dgIaa

m s1Iaa + gIaadFk
a

= 2HĨ Cas0d
s1Iaa − idHĨ aadm

s1Iaa + idHĨ aadm+1
Fk

a, sB3d

from which the boundary term can easily be extracted by

taking the appropriate linear combination of the FC,k
asmd and

then multiplying by −idzIa
smd, see Eq. s82d. Since region C

includes few layers of the leads the vector FC,k
asmd is zero

everywhere except for the components corresponding to or-

bitals in contact with lead a. If we call fC,k
asmd the vector with

such components from Eq. sB3d, we can write

fC,k
asmd = 2tIaF s1Iaa − idHĨ aadm

s1Iaa + idHĨ aadm+1
Fk

aG
j=0

; 2tIaVk
asmd,

sB4d

where the subscript j=0 in the square brackets denotes the

vector of dimension 2Ncell
a with components given by the

projection of the full vector onto the first j=0 supercell. As

for the embedding matrices, we introduce the generating

function,

Vk
asx,yd = F 1

x1Iaa + iydHĨ aa

Fk
aG

j=0

sB5d

from which the Vk
asmd are obtained via multiple derivatives,

Vk
asmd =

1

m!
UF− ]

]x
+

]

]y
Gm

Vk
asx,ydU

x=y=1

. sB6d

The generating function can be obtained as follows. Taking
Fk

a as in Eq. sB1d and exploiting the property in Eq. sB2d, it
is easy to realize that

fHĨ aaFk
ag j = sE − d j,0e

−iktIa
†dfFk

ag j , sB7d

where the subscript j denotes the vector of dimension 2Ncell
a

with components given by the projection of the full vector

onto the jth supercell. Then, multiplying the Dyson identity,

1

x1Iaa + idyHĨ aa

=
1

x
−
iyd

x

1

x1Iaa + iydHĨ aa

HĨ aa sB8d

on the right by Fk
a, using Eq. sB7d and solving for Vk

asx ,yd
we obtain the following result:

Vk
asx,yd =

1 + iyde−ikpI asx,ydtIa
†

x + iydE
Zk

a, sB9d

where pI asx ,yd is the generating function defined in Eq. sA3d.
The quantity Vk

asmd can now be obtained from Eq. sB6d and

reads

Vk
asmd =

s1 − idEdm

s1 + idEdm+1
Zk

a + ide−iko
n=0

m
s1 − idEdm−n

s1 + idEdm−n+1

3spI a
snd + pI a

sn−1ddtIa
†Zk

a. sB10d

This concludes the calculation of the boundary term.
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