1,662 research outputs found

    The calculation of neutron capture gamma-ray yields for space shielding applications

    Get PDF
    The application of nuclear models to the calculation of neutron capture and inelastic scattering gamma yields is discussed. The gamma ray cascade model describes the cascade process in terms of parameters which either: (1) embody statistical assumptions regarding electric and magnetic multipole transition strengths, level densities, and spin and parity distributions or (2) are fixed by experiment such as measured energies, spin and parity values, and transition probabilities for low lying states

    Extreme Nonlinear Optics in a Femtosecond Enhancement Cavity

    Full text link
    Intrinsic to the process of high-order harmonic generation is the creation of plasma and the resulting spatiotemporal distortions of the driving laser pulse. Inside a high finesse cavity where the driver pulse and gas medium are reused, this can lead to optical bistability of the cavity-plasma system, accumulated self-phase modulation of the intracavity pulse, and coupling to higher order cavity modes. We present an experimental and theoretical study of these effects and discuss their implications for power scaling of intracavity high-order harmonic generation and extreme ultraviolet frequency combs

    The Stockman\u27s Scorecard: Validity and Reliability as an Instrument for Measuring Stockmanship

    Get PDF
    The quality of beef cattle stockmanship typically is evaluated through quantitative and qualitative measurements of animal behavior. The Stockman\u27s Scorecard is an observation instrument that has been developed to directly measure the actions of beef cattle stockmen. This article documents a pilot project for determining the content validity, internal consistency, and intrarater reliability of the scorecard as an evaluation instrument. Our results show that the scorecard is a valid and reliable instrument for measuring the actions of stockmen. The instrument can be a valuable tool for Extension educators in evaluating their stockmanship programming impacts

    Effects of impulsive noise on marine mammals : investigating range-dependent risk

    Get PDF
    This work was funded as part of the Department of Energy and Climate Change's Offshore Energy Strategic Environmental Assessment programme, with additional resources from the National Capability funding from the Natural Environment Research Council to the Sea Mammal Research Unit (grant no. SMRU1001). Recordings of piling and seismic noise from the Moray Firth were collected with the support of the Department of Energy and Climate Change, Scottish Government, Oil and Gas UK Ltd., COWRIE, EU DOWNVInD project, Talisman Energy (UK) Ltd. and Scottish & Southern Energy. Thanks also to Helen Bailey and Keith Needham for making field recordings, Francesca Marubini for comments and suggestions on drafts of the manuscript, and to Stephen Robinson at the National Physics Laboratory and Douglas Gillespie at the Sea Mammal Research Unit for discussions and guidance about acoustic analyses.Peer reviewedPublisher PD

    Automatic wheeze detection based on auditory modelling

    Get PDF
    Automatic wheeze detection has several potential benefits compared with reliance on human auscultation: it is experience independent, an automated historical record can easily be kept, and it allows quantification of wheeze severity. Previous attempts to detect wheezes automatically have had partial success but have not been reliable enough to become widely accepted as a useful tool. In this paper an improved algorithm for automatic wheeze detection based on auditory modelling is developed, called the frequency- and duration-dependent threshold algorithm. The mean frequency and duration of each wheeze component are obtained automatically. The detected wheezes are marked on a spectrogram. In the new algorithm, the concept of a frequency- and duration-dependent threshold for wheeze detection is introduced. Another departure from previous work is that the threshold is based not on global power but on power corresponding to a particular frequency range. The algorithm has been tested on 36 subjects, 11 of whom exhibited characteristics of wheeze. The results show a marked improvement in the accuracy of wheeze detection when compared with previous algorithms

    Strong Coupling Constant from the Photon Structure Function

    Full text link
    We extract the value of the strong coupling constant alpha_s from a single-parameter pointlike fit to the photon structure function F_2^gamma at large x and Q^2 and from a first five-parameter full (pointlike and hadronic) fit to the complete F_2^gamma data set taken at PETRA, TRISTAN, and LEP. In next-to-leading order and the MSbar renormalization and factorization schemes, we obtain alpha_s(m_Z)=0.1183 +/- 0.0050(exp.)^+0.0029_-0.0028(theor.) [pointlike] and alpha_s(m_Z)=0.1198 +/- 0.0028(exp.)^+0.0034_-0.0046(theor.) [pointlike and hadronic]. We demonstrate that the data taken at LEP have reduced the experimental error by about a factor of two, so that a competitive determination of alpha_s from F_2^gamma is now possible.Comment: 11 pages, 2 tables, 2 figures. Version accepted for publication by Phys. Rev. Let

    XUV Frequency Combs via Femtosecond Enhancement Cavities

    Full text link
    We review the current state of tabletop extreme ultraviolet (XUV) sources based on high harmonic generation (HHG) in femtosecond enhancement cavities (fsEC). Recent developments have enabled generation of high photon flux (1014 photons/sec) in the XUV, at high repetition rates (>50 MHz) and spanning the spectral region from 40 nm - 120 nm. This level of performance has enabled precision spectroscopy with XUV frequency combs and promises further applications in XUV spectroscopic and photoemission studies. We discuss the theory of operation and experimental details of the fsEC and XUV generation based on HHG, including current technical challenges to increasing the photon flux and maximum photon energy produced by this type of system. Current and future applications for these sources are also discussed.Comment: invited review article, 38 page

    Puncture Self-Healing Polymers for Aerospace Applications

    Get PDF
    Space exploration launch costs on the order of $10K per pound provide ample incentive to seek innovative, cost-effective ways to reduce structural mass without sacrificing safety and reliability. Damage-tolerant structural systems can provide a route to avoiding weight penalty while enhancing vehicle safety and reliability. Self-healing polymers capable of spontaneous puncture repair show great promise to mitigate potentially catastrophic damage from events such as micrometeoroid penetration. Effective self-repair requires these materials to heal instantaneously following projectile penetration while retaining structural integrity. Poly(ethylene-co-methacrylic acid) (EMMA), also known as Surlyn is an ionomer-based copolymer that undergoes puncture reversal (self-healing) following high impact puncture at high velocities. However EMMA is not a structural engineering polymer, and will not meet the demands of aerospace applications requiring self-healing engineering materials. Current efforts to identify candidate self-healing polymer materials for structural engineering systems are reported. Rheology, high speed thermography, and high speed video for self-healing semi-crystalline and amorphous polymers will be reported
    corecore