655 research outputs found

    Sediment-moss interactions on a temperate glacier: Falljökull, Iceland

    Get PDF
    Full text of this article can be found at: http://www.igsoc.org/annals/ Copyright IGS. DOI: 10.3189/172756408784700734We present the results of preliminary investigations of globular moss growth on the surface of Falljökull, a temperate outlet glacier of the Vatnajökull ice cap, southern Iceland. Supraglacial debris has provided a basis for moss colonization, and several large (>500 m2) patches of moss growth (Racomitrium spp.) are observed on the surface of the glacier. Each area of moss-colonized supraglacial debris shows a downslope increase in sphericity and moss cushion size and a decrease in percentage surface coverage of moss-colonized and bare clasts. It is suggested that moss growth on supraglacial debris allows preferential downslope movement of clasts through an associated increase in both overall mass and sphericity. Thermal insulation by moss cushions protects the underlying ice surface from melt, and the resulting ice pedestals assist in downslope sliding and toppling of moss cushions. The morphology and life cycle of supraglacial globular mosses is therefore not only closely linked to the presence and distribution of supraglacial debris, but also appears to assist in limited down-glacier transport of this debris. This research highlights both the dynamic nature of the interaction of mosses with supraglacial sedimentary systems and the need for a detailed consideration of their role within the wider glacial ecosystem.Peer reviewe

    TSPO expression in brain tumours: is TSPO a target for brain tumour imaging?

    Get PDF
    Positron emission tomography (PET) alone or in combination with MRI is increasingly assuming a central role in the development of diagnostic and therapeutic strategies for brain tumours with the aim of addressing tumour heterogeneity, assisting in patient stratification, and contributing to predicting treatment response. The 18 kDa translocator protein (TSPO) is expressed in high-grade gliomas, while its expression is comparatively low in normal brain. In addition, the evidence of elevated TSPO in neoplastic cells has led to studies investigating TSPO as a transporter of anticancer drugs for brain delivery and a selective target for tumour tissue. The TSPO therefore represents an ideal candidate for molecular imaging studies. Knowledge of the biology of TSPO in normal brain cells, in-depth understanding of TSPO functions and biodistribution in neoplastic cells, accurate methods for quantification of uptake of TSPO tracers and pharmacokinetic data regarding TSPO-targeted drugs are required before introducing TSPO PET and TSPO-targeted treatment in clinical practice. In this review, we will discuss the impact of preclinical PET studies and the application of TSPO imaging in human brain tumours, the advantages and disadvantages of TSPO imaging compared to other imaging modalities and other PET tracers, and pathology studies on the extent and distribution of TSPO in gliomas. The suitability of TSPO as molecular target for treatment of brain tumours will also be the appraised

    [11C]-l-Methionine positron emission tomography in the management of children and young adults with brain tumors

    Get PDF
    Only a few Methyl-[11C]-l-methionine (MET) positron emission tomography (PET) studies have focused on children and young adults with brain neoplasm. Due to radiation exposure, long scan acquisition time, and the need for sedation in young children MET-PET studies should be restricted to this group of patients when a decision for further therapy is not possible from routine diagnostic procedures alone, e.g., structural imaging. We investigated the diagnostic accuracy of MET-PET for the differentiation between tumorous and non-tumorous lesions in this group of patients. Forty eight MET-PET scans from 39 patients aged from 2 to 21 years (mean 15 ± 5.0 years) were analyzed. The MET tumor-uptake relative to a corresponding control region was calculated. A receiver operating characteristic (ROC) was performed to determine the MET-uptake value that best distinguishes tumorous from non-tumorous brain lesions. A differentiation between tumorous (n = 39) and non-tumorous brain lesions (n = 9) was possible at a threshold of 1.48 of relative MET-uptake with a sensitivity of 83% and a specificity of 92%, respectively. A differentiation between high grade malignant lesions (mean MET-uptake = 2.00 ± 0.46) and low grade tumors (mean MET-uptake = 1.84 ± 0.31) was not possible. There was a significant difference in MET-uptake between the histologically homogeneous subgroups of astrocytoma WHO grade II and anaplastic astrocytoma WHO grade III (P = 0.02). MET-PET might be a useful tool to differentiate tumorous from non-tumorous lesions in children and young adults when a decision for further therapy is difficult or impossible from routine structural imaging procedures alone

    Rabbit antithymocyte globulin induces rapid expansion of effector memory CD8 T cells without accelerating acute graft versus host disease

    Get PDF
    Rabbit antithymocyte globulin (Thymoglobulin(®)) is commonly used as graft-versus-host disease (GvHD) prophylaxis. Since we found similar total CD8 T cell numbers in patients with and without Thymoglobulin(®) therapy within the first six months after allogeneic hematopoietic stem cell transplantation, we have analyzed the reconstitution of the CD8 T cell compartment in detail. After T cell-depletion, higher and more sustained proliferative capacity of memory CD8 T cells resulted in their rapid expansion, whereas the fraction of naive CD8 T cells decreased. Importantly, this shift towards effector memory CD8 T cells did not accelerate the incidence of GvHD

    Association between cognitive performance and cortical glucose metabolism in patients with mild Alzheimer's disease

    Get PDF
    Background: Neuronal and synaptic function in Alzheimer's disease (AD) is measured in vivo by glucose metabolism using positron emission tomography (PET). Objective: We hypothesized that neuronal activation as measured by PET is a more sensitive index of neuronal dysfunction than activity during rest. We investigated if the correlations between dementia severity as measured with the Mini Mental State Examination (MMSE) and glucose metabolism are an artifact of brain atrophy. Method: Glucose metabolism was measured using {[}F-18]fluorodeoxyglucose PET during rest and activation due to audiovisual stimulation in 13 mild to moderate AD patients (MMSE score >= 17). PET data were corrected for brain atrophy. Results: In the rest condition, glucose metabolism was correlated with the MMSE score primarily within the posterior cingulate and parietal lobes. For the activation condition, additional correlations were within the primary and association audiovisual areas. Most local maxima remained significant after correcting for brain atrophy. Conclusion: PET activity measured during audiovisual stimulation was more sensitive to functional alterations in glucose metabolism in AD patients compared to the resting PET. The association between glucose metabolism and MMSE score was not dependent on brain atrophy. Copyright (C) 2005 S. Karger AG, Basel

    Leistung und Stresslevel bei Maultieren während eines fünftägigen Gotthardtrecks

    Get PDF
    Während einer fünftägigen Gotthardüberquerung im Sommer 2016 haben drei Maultiere als Tragtiere mit einer Gepäcklast von je 80 kg rund 94,46 Kilometer und 3’364 Höhenmeter bewältigt. Die Leistungsanforderung wurde anhand der Erholungswerte der Vitalparameter Herzfrequenz, Atemfrequenz und Körpertemperatur, sowie durch kontinuierliche Herzfrequenzmessung während der Belastung evaluiert. Die Bestimmung der Glucokortikoid- Metabolit Konzentration im Kot diente zur Einschätzung des Stresslevels der drei Maultiere. Die Erholungswerte der Herzfrequenzen der drei Maultiere lagen während allen Trekkingetappen in einem Bereich, der nicht auf eine Leistungsüberforderung schliessen liess. Anhand der kontinuierlichen Herzfrequenzaufzeichnung bei einem der Maultiere konnte gezeigt werden, dass die physische Leistungsanforderung im Ausdauerbereich lag. Wie als normale physiologische Reaktion des Körpers nach einer fünftägigen körperlichen Belastung erwartet, stieg Stresslevel gemessen an den Glucokortikoid-Metaboliten im Kot gegen Ende des Trecks bei allen Maultieren an. In der vorliegenden Studie konnte gezeigt werden, dass die Maultiere während des Gotthardtrecks ausdauernd belastbar waren, ohne durch die Anstrengung beeinträchtigt zu sein, die schon historisch von Maultieren abverlangt wurde

    Positron emission tomography to image cerebral neuroinflammation in ischaemic stroke: a pilot study

    Get PDF
    Background Activated microglia play a complex role in neuroinflammation associated with acute ischaemic stroke. As a potential target for anti-inflammatory therapy, it is crucial to understand the association between intensity, extent and the clinical outcome of a stroke. The 18-kDa translocator protein is a marker of cerebral microglial activation and of macrophage infiltration after damage to the brain. It can be imaged by positron emission tomography. Therefore, the recently developed radiopharmaceutical [18F]-GE180 was used in patients after a mild to moderate stroke and compared with [11C]-(R)-PK11195, which has already been established in research but cannot be used in routine clinical settings because of its very short half-life. Objectives Objectives for phase 1 were to evaluate the tolerability of positron emission tomography scanning, to assess the technical feasibility of imaging the 18-kDa translocator protein using [18F]-GE180 as radiopharmaceutical, to compare [18F]-GE180 with [11C]-(R)-PK11195 as reference. Objectives for phase 2 were examining the relation of positron emission tomography imaging with clinical outcome, magnetic resonance imaging and systemic inflammation. However, the study was ended after phase 1 because of the results obtained in that phase and did not enter phase 2. Methods Ten participants (aged 24–89 years, median 68 years) (eight male and two female) with a history of recent ischaemic stroke of mild to moderate severity (modified Rankin scale score of 2–3) in the middle cerebral artery territory were scanned 18 to 63 days (median 34.5 days) after the stroke by magnetic resonance imaging (Philips 1.5 T; Philips, Amsterdam, the Netherlands), [18F]-GE180 (200 MBq, 30-minute dynamic scan) and [11C]-(R)-PK11195 (740 MBq, 60-minute dynamic scan) positron emission tomography (Siemens HRRT; Siemens, Munich, Germany). The two positron emission tomography scans were performed on 2 separate days (mean 3.4 days apart). Five patients were randomised to receive the [18F]-GE180 scan at the first session and five patients were randomised to receive it at the second session. Participants were genotyped for the rs6971 18-kDa translocator protein polymorphism, which is known to affect binding of [18F]-GE180 but not of [11C]-(R)-PK11195. All positron emission tomography and magnetic resonance data sets were co-registered with T1-weighted magnetic resonance image scans. Binding of [18F]-GE180 was compared with [11C]-(R)-PK11195 for the infarct and contralateral reference regions. Spearman’s rank-order correlation was used to compare tracers, t-tests to compare patient subgroups. Results Tolerability of scans was rated as 4.36 (range 4–5) out of a maximum of 5 by participants, and there were no serious adverse events. There was a close correlation between [18F]-GE180 and [11C]-(R)-PK11195 (r = 0.79 to 0.84). The 18-kDa translocator protein polymorphism had a significant impact on the uptake of [18F]-GE180, which was very low in normal cortex. Ischaemic lesions with contrast enhancement on magnetic resonance as an indicator of blood–brain barrier damage showed a significantly higher uptake of [18F]-GE180 than the lesions without enhancement, even in low-affinity binders. Conclusions [18F]-GE180 was safe and well tolerated. However, strong dependency of uptake on blood–brain barrier damage and a genetic 18-kDa translocator protein polymorphism, as well as a high contribution of vascular signal to the uptake and evidence of non-specific binding in ischaemic lesions with blood–brain barrier damage, limits the clinical applicability of [18F]-GE180 as a diagnostic marker of neuroinflammation. Limitations As the study was ended after phase 1, this was only a small pilot trial. Further studies are warranted to fully understand the influence of blood–brain barrier damage on positron emission tomography microglia imaging. Trial registration Registered as a clinical trial with EudraCT 2014-000591-26. Funding This project was funded by the Efficacy and Mechanism Evaluation programme, a Medical Research Council and National Institute for Health Research (NIHR) partnership, and will be published in full in Efficacy and Mechanism Evaluation; Vol. 7, No. 1. See the NIHR Journals Library website for further information. It was also supported by GE Healthcare (Chicago, IL, USA) by free production and delivery of [18F]-GE180 and by supply of regulatory documents (Investigational Medical Product Dossier, Investigator’s Brochure). There was partial support by the European Commission (INMiND, grant #278850) and the NIHR Sheffield Biomedical Research Centre

    Cortical thickness, surface area and volume measures in Parkinson's disease, multiple system atrophy and progressive supranuclear palsy

    Get PDF
    OBJECTIVE Parkinson's disease (PD), Multiple System Atrophy (MSA) and Progressive Supranuclear Palsy (PSP) are neurodegenerative diseases that can be difficult to distinguish clinically. The objective of the current study was to use surface-based analysis techniques to assess cortical thickness, surface area and grey matter volume to identify unique morphological patterns of cortical atrophy in PD, MSA and PSP and to relate these patterns of change to disease duration and clinical features. METHODS High resolution 3D T1-weighted MRI volumes were acquired from 14 PD patients, 18 MSA, 14 PSP and 19 healthy control participants. Cortical thickness, surface area and volume analyses were carried out using the automated surface-based analysis package FreeSurfer (version 5.1.0). Measures of disease severity and duration were assessed for correlation with cortical morphometric changes in each clinical group. RESULTS Results show that in PSP, widespread cortical thinning and volume loss occurs within the frontal lobe, particularly the superior frontal gyrus. In addition, PSP patients also displayed increased surface area in the pericalcarine. In comparison, PD and MSA did not display significant changes in cortical morphology. CONCLUSION These results demonstrate that patients with clinically established PSP exhibit distinct patterns of cortical atrophy, particularly affecting the frontal lobe. These results could be used in the future to develop a useful clinical application of MRI to distinguish PSP patients from PD and MSA patients
    corecore