266 research outputs found

    Neutron Halo Isomers in Stable Nuclei and their Possible Application for the Production of Low Energy, Pulsed, Polarized Neutron Beams of High Intensity and High Brilliance

    Full text link
    We propose to search for neutron halo isomers populated via γ\gamma-capture in stable nuclei with mass numbers of about A=140-180 or A=40-60, where the 4s1/24s_{1/2} or 3s1/23s_{1/2} neutron shell model state reaches zero binding energy. These halo nuclei can be produced for the first time with new γ\gamma-beams of high intensity and small band width (\le 0.1%) achievable via Compton back-scattering off brilliant electron beams thus offering a promising perspective to selectively populate these isomers with small separation energies of 1 eV to a few keV. Similar to single-neutron halo states for very light, extremely neutron-rich, radioactive nuclei \cite{hansen95,tanihata96,aumann00}, the low neutron separation energy and short-range nuclear force allows the neutron to tunnel far out into free space much beyond the nuclear core radius. This results in prolonged half lives of the isomers for the γ\gamma-decay back to the ground state in the 100 ps-μ\mus range. Similar to the treatment of photodisintegration of the deuteron, the neutron release from the neutron halo isomer via a second, low-energy, intense photon beam has a known much larger cross section with a typical energy threshold behavior. In the second step, the neutrons can be released as a low-energy, pulsed, polarized neutron beam of high intensity and high brilliance, possibly being much superior to presently existing beams from reactors or spallation neutron sources.Comment: accepted for publication in Applied Physics

    Human cerebral organoids and fetal brain tissue share proteomic similarities

    Get PDF
    The limited access to functional human brain tissue has led to the development of stem cell-based alternative models. The differentiation of human pluripotent stem cells into cerebral organoids with self-organized architecture has created novel opportunities to study the early stages of the human cerebral formation. Here we applied state-of-the-art label-free shotgun proteomics to compare the proteome of stem cell-derived cerebral organoids to the human fetal brain. We identified 3,073 proteins associated with different developmental stages, from neural progenitors to neurons, astrocytes, or oligodendrocytes. The major protein groups are associated with neurogenesis, axon guidance, synaptogenesis, and cortical brain development. Glial cell proteins related to cell growth and maintenance, energy metabolism, cell communication, and signaling were also described. Our data support the variety of cells and neural network functional pathways observed within cell-derived cerebral organoids, confirming their usefulness as an alternative model. The characterization of brain organoid proteome is key to explore, in a dish, atypical and disrupted processes during brain development or neurodevelopmental, neurodegenerative, and neuropsychiatric diseases7CONSELHO NACIONAL DE DESENVOLVIMENTO CIENTÍFICO E TECNOLÓGICO - CNPQCOORDENAÇÃO DE APERFEIÇOAMENTO DE PESSOAL DE NÍVEL SUPERIOR - CAPESFINANCIADORA DE ESTUDOS E PROJETOS - FINEPFUNDAÇÃO CARLOS CHAGAS FILHO DE AMPARO À PESQUISA DO ESTADO DO RIO DE JANEIRO - FAPERJFUNDAÇÃO DE AMPARO À PESQUISA DO ESTADO DE SÃO PAULO - FAPESPNão temNão temNão temNão tem14/21035-0; 16/07332-7; 13/08711-3; 14/10068-4JN, VS-C, and DM-D-S are supported by the São Paulo Research Foundation (FAPESP) grants 14/21035-0, 16/07332-7, 13/08711-3, and 14/10068-4. CS was recipient of a CAPES-FAPERJ Postdoc fellowship. Other funds are provided by the National Council for Scientific and Technological Development (CNPq), the Instituto Nacional de Ciência e Tecnologia de Neurociência Translacional (INCT-INNT), Foundation for Research Support in the State of Rio de Janeiro (FAPERJ), Coordination for the Improvement of Higher Education Personnel (CAPES), Brazilian Funding Authority for Studies and Projects (FINEP), and Brazilian Development Bank (BNDES

    Perspectives in visual imaging for marine biology and ecology: from acquisition to understanding

    Get PDF
    Durden J, Schoening T, Althaus F, et al. Perspectives in Visual Imaging for Marine Biology and Ecology: From Acquisition to Understanding. In: Hughes RN, Hughes DJ, Smith IP, Dale AC, eds. Oceanography and Marine Biology: An Annual Review. 54. Boca Raton: CRC Press; 2016: 1-72
    corecore