4,345 research outputs found

    The isomorphism conjecture for 3-manifold groups and K-theory of virtually poly-surface groups

    Full text link
    This article has two purposes. In \cite{R3} (math.KT/0405211) we showed that the FIC (Fibered Isomorphism Conjecture for pseudoisotopy functor) for a particular class of 3-manifolds (we denoted this class by \cal C) is the key to prove the FIC for 3-manifold groups in general. And we proved the FIC for the fundamental groups of members of a subclass of \cal C. This result was obtained by showing that the double of any member of this subclass is either Seifert fibered or supports a nonpositively curved metric. In this article we prove that for any M in {\cal C} there is a closed 3-manifold P such that either P is Seifert fibered or is a nonpositively curved 3-manifold and \pi_1(M) is a subgroup of \pi_1(P). As a consequence this proves that the FIC is true for any B-group (see definition 3.2 in \cite{R3}). Therefore, the FIC is true for any Haken 3-manifold group and hence for any 3-manifold group (using the reduction theorem of \cite{R3}) provided we assume the Geometrization conjecture. The above result also proves the FIC for a class of 4-manifold groups (see \cite{R2}(math.GT/0209119)). The second aspect of this article is to relax a condition in the definition of strongly poly-surface group (\cite{R1} (math.GT/0209118)) and define a new class of groups (we call them {\it weak strongly poly-surface} groups). Then using the above result we prove the FIC for any virtually weak strongly poly-surface group. We also give a corrected proof of the main lemma of \cite{R1}.Comment: 12 pages, AMS Latex file, 1 figure, final version. accepted for publication in K-theor

    Some properties of convection in hybrid stars

    Full text link
    It is shown that the unusual thermodynamic properties of matter within the region of two-phase coexistence in hybrid stars result in a change of the standard condition for beginning of convection. In particular, the thermal flux transported by convection may be directed towards the stellar center. We discuss favorable circumstances leading to such an effect of "inverse convection" and its possible influence on the thermal evolution of hybrid stars.Comment: 13 pages, 3 figures. The discussion is extended according to referees suggestions. New references added. Accepted to MNRA

    Abelian covers of surfaces and the homology of the level L mapping class group

    Full text link
    We calculate the first homology group of the mapping class group with coefficients in the first rational homology group of the universal abelian Z/LZ\Z / L \Z-cover of the surface. If the surface has one marked point, then the answer is \Q^{\tau(L)}, where τ(L)\tau(L) is the number of positive divisors of LL. If the surface instead has one boundary component, then the answer is \Q. We also perform the same calculation for the level LL subgroup of the mapping class group. Set HL=H1(Σg;Z/LZ)H_L = H_1(\Sigma_g;\Z/L\Z). If the surface has one marked point, then the answer is \Q[H_L], the rational group ring of HLH_L. If the surface instead has one boundary component, then the answer is \Q.Comment: 32 pages, 10 figures; numerous corrections and simplifications; to appear in J. Topol. Ana

    Nucleosynthesis in 2D Core-Collapse Supernovae of 11.2 and 17.0 M⊙_{\odot} Progenitors: Implications for Mo and Ru Production

    Full text link
    Core-collapse supernovae are the first polluters of heavy elements in the galactic history. As such, it is important to study the nuclear compositions of their ejecta, and understand their dependence on the progenitor structure (e.g., mass, compactness, metallicity). Here, we present a detailed nucleosynthesis study based on two long-term, two-dimensional core-collapse supernova simulations of a 11.2 M⊙_{\odot} and a 17.0 M⊙_{\odot} star. We find that in both models nuclei well beyond the iron group (up to Z≈44Z \approx 44) can be produced, and discuss in detail also the nucleosynthesis of the p-nuclei 92,94^{92,94}Mo and 96,98^{96,98}Ru. While we observe the production of 92^{92}Mo and 94^{94}Mo in slightly neutron-rich conditions in both simulations, 96,98^{96,98}Ru can only be produced efficiently via the ν\nup-process. Furthermore, the production of Ru in the ν\nup-process heavily depends on the presence of very proton-rich material in the ejecta. This disentanglement of production mechanisms has interesting consequences when comparing to the abundance ratios between these isotopes in the solar system and in presolar grains.Comment: 48 pages, 19 figures, accepted for publication in: J. Phys. G: Nucl. Part. Phy

    Pushing 1D CCSNe to explosions: model and SN 1987A

    Full text link
    We report on a method, PUSH, for triggering core-collapse supernova explosions of massive stars in spherical symmetry. We explore basic explosion properties and calibrate PUSH such that the observables of SN1987A are reproduced. Our simulations are based on the general relativistic hydrodynamics code AGILE combined with the detailed neutrino transport scheme IDSA for electron neutrinos and ALS for the muon and tau neutrinos. To trigger explosions in the otherwise non-exploding simulations, we rely on the neutrino-driven mechanism. The PUSH method locally increases the energy deposition in the gain region through energy deposition by the heavy neutrino flavors. Our setup allows us to model the explosion for several seconds after core bounce. We explore the progenitor range 18-21M⊙_{\odot}. Our studies reveal a distinction between high compactness (HC) and low compactness (LC) progenitor models, where LC models tend to explore earlier, with a lower explosion energy, and with a lower remnant mass. HC models are needed to obtain explosion energies around 1 Bethe, as observed for SN1987A. However, all the models with sufficiently high explosion energy overproduce 56^{56}Ni. We conclude that fallback is needed to reproduce the observed nucleosynthesis yields. The nucleosynthesis yields of 57−58^{57-58}Ni depend sensitively on the electron fraction and on the location of the mass cut with respect to the initial shell structure of the progenitor star. We identify a progenitor and a suitable set of PUSH parameters that fit the explosion properties of SN1987A when assuming 0.1M⊙_{\odot} of fallback. We predict a neutron star with a gravitational mass of 1.50M⊙_{\odot}. We find correlations between explosion properties and the compactness of the progenitor model in the explored progenitors. However, a more complete analysis will require the exploration of a larger set of progenitors with PUSH.Comment: revised version as accepted by ApJ (results unchanged, text modified for clarification, a few references added); 26 pages, 20 figure

    Guiding of Rydberg atoms in a high-gradient magnetic guide

    Full text link
    We study the guiding of 87^{87}Rb 59D5/2_{5/2} Rydberg atoms in a linear, high-gradient, two-wire magnetic guide. Time delayed microwave ionization and ion detection are used to probe the Rydberg atom motion. We observe guiding of Rydberg atoms over a period of 5 ms following excitation. The decay time of the guided atom signal is about five times that of the initial state. We attribute the lifetime increase to an initial phase of ll-changing collisions and thermally induced Rydberg-Rydberg transitions. Detailed simulations of Rydberg atom guiding reproduce most experimental observations and offer insight into the internal-state evolution

    Meiotic sex chromosome cohesion and autosomal synapsis are supported by Esco2.

    No full text
    In mitotic cells, establishment of sister chromatid cohesion requires acetylation of the cohesin subunit SMC3 (acSMC3) by ESCO1 and/or ESCO2. Meiotic cohesin plays additional but poorly understood roles in the formation of chromosome axial elements (AEs) and synaptonemal complexes. Here, we show that levels of ESCO2, acSMC3, and the pro-cohesion factor sororin increase on meiotic chromosomes as homologs synapse. These proteins are less abundant on the largely unsynapsed sex chromosomes, whose sister chromatid cohesion appears weaker throughout the meiotic prophase. Using three distinct conditional Esco2 knockout mouse strains, we demonstrate that ESCO2 is essential for male gametogenesis. Partial depletion of ESCO2 in prophase I spermatocytes delays chromosome synapsis and further weakens cohesion along sex chromosomes, which show extensive separation of AEs into single chromatids. Unsynapsed regions of autosomes are associated with the sex chromatin and also display split AEs. This study provides the first evidence for a specific role of ESCO2 in mammalian meiosis, identifies a particular ESCO2 dependence of sex chromosome cohesion and suggests support of autosomal synapsis by acSMC3-stabilized cohesion
    • …
    corecore