444 research outputs found

    QU Carinae: Supernova Ia in the making?

    Get PDF
    Variable NaI absorption lines have been reported in a number of type Ia supernovae (SNeIa). The presence of this circumstellar material suggests that cataclysmic variables (CVs) with a giant donor star may be the progenitors of these SNeIa (Patat et al. 2007). We present echelle spectra of the CV QU Carinae which strengthen the connection between CVs of the V Sge class, the Accretion Wind Evolution scenario, variable wind features, variable NaI absorption, and SNIa. This thread not only provides insight into the spectral peculiarities of QU Car, but also links SNeIa as a class with their parent systems.Comment: Accepted for publication to MNRAS. 23 pages (4 figures, 3 tables

    Five-Year Optical and Near Infrared Observations of the Extremely Slow Nova V1280 Scorpii

    Full text link
    We present optical (BB, VV, RcR_{\rm c}, IcI_{\rm c} and yy) and near infrared (JJ, HH and KsK_{\rm s}) photometric and spectroscopic observations of a classical nova V1280 Scorpii for five years from 2007 to 2011. Our photometric observations show a declining event in optical bands shortly after the maximum light which continues ∌\sim 250 days. The event is most probably caused by a dust formation. The event is accompanied by a short (∌\sim 30 days) re-brightening episode (∌\sim 2.5 mag in VV), which suggests a re-ignition of the surface nuclear burning. After 2008, the yy band observations show a very long plateau at around yy = 10.5 for more than 1000 days until April 2011 (∌\sim 1500 days after the maximum light). The nova had taken a very long time (∌\sim 50 months) before entering the nebular phase (clear detection of both [\ion{O}{iii}] 4959 and 5007) and is still continuing to generate the wind caused by H-burning. The finding suggests that V1280 Sco is going through the historically slowest evolution. The interval from the maximum light (2007 February 16) to the beginning of the nebular phase is longer than any previously known slow novae: V723 Cas (18 months), RR Pic (10 months), or HR Del (8 months). It suggests that the mass of a white dwarf in the V1280 Sco system might be 0.6 M_\mathrm{\sun} or smaller. The distance, based on our measurements of the expansion velocity combined with the directly measured size of the dust shell, is estimated to be 1.1 ±\pm 0.5 kpc.Comment: 17 pages, 14 figures, accepted for publication in A&

    Stationary structures of irrotational binary systems -- models for close binary systems of compact stars

    Get PDF
    We propose a new numerical method to calculate irrotational binary systems composed of compressible gaseous stars in Newtonian gravity. Assuming irrotationality, i.e. vanishing of the vorticity vector everywhere in the star in the inertial frame, we can introduce the velocity potential for the flow field. Using this velocity potential we can derive a set of basic equations for stationary states which consist of (i) the generalized Bernoulli equation, (ii) the Poisson equation for the Newtonian gravitational potential and (iii) the equation for the velocity potential with the Neumann type boundary condition. We succeeded in developing a new code to compute numerically exact solutions to these equations for the first time. Such irrotational configurations of binary systems are appropriate models for realistic neutron star binaries composed of inviscid gases, just prior to coalescence of two stars caused by emission of gravitational waves. Accuracies of our numerical solutions are so high that we can compute reliable models for fully deformed final stationary configurations and hence determine the inner most stable circular orbit of binary neutron star systems under the approximations of weak gravity and inviscid limit.Comment: 32 pages, 25 bitmapped ps files, to appear in ApJ supplemen

    An approximate solver for Riemann and Riemann-like Ellipsoidal Configurations

    Full text link
    We introduce a new technique for constructing three-dimensional (3D) models of incompressible Riemann S-type ellipsoids and compressible triaxial configurations that share the same velocity field as that of Riemann S-type ellipsoids. Our incompressible models are exact steady-state configurations; our compressible models represent approximate steady-state equilibrium configurations. Models built from this method can be used to study a variety of relevant astrophysical and geophysical problems.Comment: 25 pages, 10 figures, ApJ accepted, refereed versio

    Evolution of Rotating Accreting White Dwarfs and the Diversity of Type Ia Supernovae

    Full text link
    Type Ia supernovae (SNe Ia) have relatively uniform light curves and spectral evolution, which make SNe Ia useful standard candles to determine cosmological parameters. However, the peak brightness is not completely uniform, and the origin of the diversity has not been clear. We examine whether the rotation of progenitor white dwarfs (WDs) can be the important source of the diversity of the brightness of SNe Ia. We calculate the structure of rotating WDs with an axisymmetric hydrostatic code. The diversity of the mass induced by the rotation is ~0.08 Msun and is not enough to explain the diversity of luminosity. However, we found the following relation between the initial mass of the WDs and their final state; i.e., a WD of smaller initial mass will rotate more rapidly before the supernova explosion than that of larger initial mass. This result might explain the dependence of SNe Ia on their host galaxies.Comment: 7 pages, 6 figure

    Electrodynamic trapping of spinless neutral atoms with an atom chip

    Full text link
    Three dimensional electrodynamic trapping of neutral atoms has been demonstrated. By applying time-varying inhomogeneous electric fields with micron-sized electrodes, nearly 10210^2 strontium atoms in the 1S0^1S_0 state have been trapped with a lifetime of 80 ms. In order to design the electrodes, we numerically analyzed the electric field and simulated atomic trajectories in the trap, which showed reasonable agreement with the experiment.Comment: 4pages, 4figures, to appear in Phys. Rev. Let
    • 

    corecore