26,311 research outputs found

    Research Summary on Fracture of Swollen Rubber

    Get PDF
    Crack propagation and critical strain in swollen rubbe

    On the relaxation modulus of the equivoluminal composition of solithane 113

    Get PDF
    Relaxation moduli of equivoluminal ring and strip samples of Solithan

    Evaluation of meteorological airborne Doppler radar

    Get PDF
    This paper will discuss the capabilities of airborne Doppler radar for atmospheric sciences research. The evaluation is based on airborne and ground based Doppler radar observations of convective storms. The capability of airborne Doppler radar to measure horizontal and vertical air motions is evaluated. Airborne Doppler radar is shown to be a viable tool for atmospheric sciences research

    The Fracture Energy and Some Mechanical Properties of a Polyurethane Elastomer

    Get PDF
    The energy required to form a unit of new surface in the fracture of a polyurethane elastomer is determined. The rate sensitivity of the material has been reduced by swelling it in toluene. This paper primarily describes the experimental work of measuring the lower limit of the fracture energy. With this value and the creep compliance as a basis, the rate dependence of fracture energy for the unswollen material has been determined. It is thus shown that the dependence of the fracture energy on the rate of crack propagation can be explained by energy dissipation around the tip of the crack. Good agreement between the theoretically and experimentally determined relationships for the rate-sensitive fracture energy is demonstrated

    Crossover from a square to a hexagonal pattern in Faraday surface waves

    Full text link
    We report on surface wave pattern formation in a Faraday experiment operated at a very shallow filling level, where modes with a subharmonic and harmonic time dependence interact. Associated with this distinct temporal behavior are different pattern selection mechanisms, favoring squares or hexagons, respectively. In a series of bifurcations running through a pair of superlattices the surface wave pattern transforms between the two incompatible symmetries. The close analogy to 2D and 3D crystallography is pointed out.Comment: 4 pages, 4 figure

    Charge radius and dipole response of 11^{11}Li

    Get PDF
    We investigate the consistency of the measured charge radius and dipole response of 11^{11}Li within a three-body model. We show how these observables are related to the mean square distance between the 9^9Li core and the center of mass of the two valence neutrons. In this representation we find by considering the effect of smaller corrections that the discrepancy between the results of the two measurements is of the order of 1.5σ\sigma. We also investigate the sensitivity to the three-body structure of 11^{11}Li and find that the charge radius measurement favors a model with a 50% s-wave component in the ground state of the two-neutron halo, whereas the dipole response is consistent with a smaller s-wave component of about 25% value.Comment: 6 pages, 3 figure

    Phase relaxation of Faraday surface waves

    Full text link
    Surface waves on a liquid air interface excited by a vertical vibration of a fluid layer (Faraday waves) are employed to investigate the phase relaxation of ideally ordered patterns. By means of a combined frequency-amplitude modulation of the excitation signal a periodic expansion and dilatation of a square wave pattern is generated, the dynamics of which is well described by a Debye relaxator. By comparison with the results of a linear theory it is shown that this practice allows a precise measurement of the phase diffusion constant.Comment: 5 figure
    corecore