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We investigate the consistency of the measured charge radius and dipole response of 11Li within a three-body
model. We show how these observables are related to the mean-square distance between the 9Li core and the
center of mass of the two valence neutrons. In this representation we find by considering the effect of smaller
corrections that the discrepancy between the results of the two measurements is of the order of 1.5σ . We also
investigate the sensitivity to the three-body structure of 11Li and find that the charge radius measurement favors
a model with a 50% s-wave component in the ground state of the two-neutron halo, whereas the dipole response
is consistent with a smaller s-wave component of about 25% value.

DOI: 10.1103/PhysRevC.76.024302 PACS number(s): 21.10.Ft, 21.45.+v, 21.60.Gx, 25.60.−t

I. INTRODUCTION

The properties of the two-neutron halo nucleus 11Li have
been discussed in numerous theoretical and experimental
papers but knowledge about its structure is still uncertain. In the
past year, the results of two important measurements have been
published, namely, the RMS (root-mean-square) charge radius
of 11Li obtained from laser spectroscopy [1] and the dipole
response, which was probed by Coulomb dissociation on a Pb
target [2]. The purpose of this paper is to investigate whether
the two measurements can be explained simultaneously within
a three-body model and to ascertain the implications of the two
results for the structure of 11Li.

The nucleus 11Li is an excellent example of a so-called
Borromean system, a bound three-body system in which none
of the two-body subsystems form a bound state. Thus 11Li
can be viewed as a three-body system consisting of a 9Li core
and two valence neutrons where neither 10Li nor the dineutron
system has a bound state. The nucleus 11Li has only one bound
state with a two-neutron separation energy of about 300 keV.

Theoretical studies of 11Li have primarily been based on
three-body models of the two valence neutrons interacting
with the 9Li core, and it has been a major challenge over the
past 10–15 years to obtain information about the neutron-core
interaction (i.e., about the scattering states in the unbound
nucleus 10Li). Early studies [3] assumed a dominant p-wave
structure of the two-neutron halo, based on a rather high-
lying p-wave resonance in 10Li. Another model [4] assumed a
shallow neutron-core potential, which does not have any bound
states, and this resulted in a strongly s-wave-dominated ground
state of the two-neutron halo. To explore the structure of 11Li,
a wider range of models were developed [5] and compared to
measurements.

A better calibration of three-body models for 11Li became
possible with an accurate measurement of the two-neutron
separation energy, S2n = 295 ± 15 keV [6], and a production
measurement [7] that probed the continuum of 10Li. The latter
measurement suggested a p-wave resonance at about 540 keV
and some influence of s-wave scattering near threshold. Let
us also mention that the quadrupole moments of 9Li and 11Li

are the same within the 15% experimental uncertainty [8]; this
can be taken as a justification for using three-body models.

An analysis of the β decay of 11Li [9] showed that about 45–
55% of the two-neutron halo must be in p1/2 orbits, whereas the
remaining part would most likely occupy s waves. Analyses of
the momentum distributions produced in high-energy breakup
reactions also suggested a large s-wave component, from 20–
40% [10] to 35–55% [11]. In fact, there seems to be a consensus
toward a large s-wave component in the two-neutron ground
state, a component that is much larger than what was expected.
This feature may be related to the famous parity inversion in
the neighboring nucleus 11Be, where the ground state is a 1/2+
state and not a 1/2− state as one naively would expect for a
p-shell nucleus. It is of interest to see how the recent charge
radius [1] and dipole response [2] measurements fit into this
trend.

II. THREE-BODY MODEL INTERPRETATION

There is a very close relationship within a three-body model
between the charge radius and the dipole response of a two-
neutron halo since they are both probes of the distance between
the 9Li core and the center of mass of the dineutron system.
The mean-square charge radius 〈r2

p(Z,A)〉 for point nucleons,
for example, can be expressed in terms of the charge radius of
the core nucleus as follows:

〈
r2
p(Z,A)

〉 = 〈
r2
p(Z,A − 2)

〉 +
(

2

A

)2 〈
r2
c,2n

〉
, (1)

where the second term is the correction caused by the center-
of-mass motion of the core nucleus in the presence of the
two valence neutrons. The correction is proportional to the
mean-square distance, 〈r2

c,2n〉, between the core and the center
of mass of the dineutron system.

The total strength of the dipole response of a two-neutron
halo nucleus is approximately given by the cluster sum rule [3],

B(E1) = 3

4π

(
Ze

A

)2

4
〈
r2
c,2n

〉
, (2)

0556-2813/2007/76(2)/024302(6) 024302-1 ©2007 The American Physical Society

http://dx.doi.org/10.1103/PhysRevC.76.024302


H. ESBENSEN, K. HAGINO, P. MUELLER, AND H. SAGAWA PHYSICAL REVIEW C 76, 024302 (2007)

which is also expressed in terms of the mean-square distance,
〈r2

c,2n〉, between the core and the dineutron system. The sum
rule assumes that the total dipole strength can be calculated by
closure, which includes dipole transitions to the Pauli blocked
core states. The effect of Pauli blocking is a minor but not
insignificant correction, as we discuss in the next section.
However, if we ignore it, we see that the charge radius and
dipole response measurements are closely related, since they
are both probes of the core-dineutron distance.

To make contact with the measured charge radius rch we
must correct the point-proton charge radii of Eq. (1) for the
finite sizes of protons and neutrons. We should also consider
the so-called Darwin-Foldy contribution and the effect of the
spin-orbit charge density discussed in Ref. [12]. We therefore
have the expression

〈
r2

ch

〉 = 〈
r2
p

〉 + 〈
R2

p

〉 + A − Z

Z

〈
R2

n

〉 + 3h̄2

4(mc)2
+ 〈r2〉so, (3)

where 〈R2
p〉 = 0.757(14) fm2 and 〈R2

n〉 = −0.1161(22) fm2

are the mean-square charge radii of protons and neutrons [13],
respectively, and 3h̄2/[4(mc)2] is the Darwin-Foldy term.

Inserting Eq. (1) into Eq. (3) we obtain the following
expression for the difference between the mean-square charge
radii of the two-neutron halo nucleus and the core nucleus:

δ
〈
r2

ch

〉 = 〈
r2

ch(Z,A)
〉 − 〈

r2
ch(Z,A − 2)

〉

=
(

2

A

)2 〈
r2
c,2n

〉 − 0.232

Z
+ 〈r2〉so

2n. (4)

It is seen that the proton charge radius Rp in Eq. (3) drops out
of Eq. (4), and so does the constant Darwin-Foldy term. The
only two corrections that survive, −0.232/Z and 〈r2〉so

2n, are
due to the nonzero, mean-square charge radius of a neutron
and the spin-orbit charge density of the two valence neutrons.

In the following we ignore the spin-orbit correction to the
charge radius except when otherwise explicitly stated. The
reason is that this correction is model dependent, so it is not
obvious how one should convert the measured isotope shift
into a mean-square core-dineutron distance. One can calculate
the spin-orbit correction in different models from the explicit
expressions that are given in Ref. [12]. In the shell model
for spherical nuclei, with two valence neutrons occupying an
unfilled (l, j ) subshell, the spin-orbit correction is

〈r2〉so
2n = 2µn

Z

(
h̄

m

)2

〈l · s〉, (5)

where µn = −1.913 is the neutron magnetic moment, m is the
neutron mass, and

〈l · s〉 = j (j + 1) − l(l + 1) − 3/4.

In three-body models one would have to calculate 〈l · s〉
numerically as an average value, since the 0+ ground state
of the two-neutron halo contains many (l, j ) single-particle
components [14].

We show in Fig. 1 the measured RMS charge radii for the
helium [15] and lithium [1,16] isotopes. The results for 6He
and 11Li are compared with the three-body model calculations
of Ref. [14]. These calculations employed a density-dependent
contact interaction to simulate low-energy nn scattering, and
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FIG. 1. Measured charge radii of He [15] and Li [1,16] isotopes
compared to the predictions of the three-body models (3BM) of 6He
and 11Li discussed in Ref. [14].

the 4He-neutron Hamiltonian was calibrated to reproduce
the known low-energy neutron-α scattering phase shifts. The
calculations for 11Li are discussed in the following.

The measured charge radius of 6He and the mean-square
core-dineutron distance we obtain when we ignore the spin-
orbit correction in Eq. (4) are compared in Table I to the
results of different models, namely, two three-body models
of Refs. [14,17] and a recent GFMC (Greens function Monte
Carlo) calculation [18]. The latter is an improvement over the
results that were published in Ref. [19].

Let us estimate the spin-orbit correction to the 6He-
4He mean-square charge radius difference in the extreme
limit where the valence neutrons occupy a pure (p3/2)2

configuration. Then 〈l · s〉 = 1, and we obtain from Eq. (5)
the correction 〈r2〉so

2n = −0.085 fm2. Another estimate is to
evaluate the average spin-orbit correction in the three-body
model developed in Ref. [14], since we know in this case
the occupation probabilities of the single-particle orbits. The
model quoted in line 5, Table II of Ref. [14], has 83% of
the two-neutron halo in (p3/2)2 orbits. Considering all orbits
of the halo we obtain the average value 〈l · s〉 = 0.82. This
implies the spin-orbit correction 〈r2〉so

2n = −0.07 fm2, which
would bring the GFMC calculation into perfect agreement with
the measurement, whereas the three-body model [14] would
be off by 10%, which is a discrepancy of almost 3σ .

TABLE I. The measured charge radius of 6He [15], the change
in the mean-square charge radius of 11Li and 9Li, and the mean-
square distance between the 4He core and the two-neutron halo in
6He compared to results of three-body models (3BM) and GFMC
calculations. The spin-orbit correction, Eq. (5), was ignored and the
charge radius of 4He was set to 1.673(1) fm.

Nucleus 〈r2
ch〉1/2 (fm) δ〈r2

ch〉 (fm2) 〈r2
c,2n〉 (fm2)

6He exp. [15] 2.054(14) 1.42(5) 13.8 ± 0.5
3BM [14] 2.036 1.35 13.2
3BM [17] 2.011 1.25 12.3
GFMC [18] 2.08(4) 1.49(15) 14.5 ± 1.5
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FIG. 2. The measured dipole response of 11Li [2] compared to
(A) the calculations of Ref. [20], with (solid) and without (dashed)
the effect of the final-state nn interaction, and (B) calculations that
are based on the s23 model described in the text.

The discrepancy between the measured and calculated
charge radius of 11Li, which can be seen in Fig. 1, may reflect
uncertainties in the neutron-core Hamiltonian that we have
used. The neutron halo ground state contains in this case
23% s waves and is therefore referred to as the s23 model
in the following. The model Hamiltonian [14] was calibrated
to reproduce the measured two-neutron separation energy [6]
and also the p-wave resonance structure observed in Ref. [7],
but there is still some uncertainty in the s-wave strength, which
we explore in the following.

III. DIPOLE RESPONSE

The measured dipole strength distribution [2] is compared
in Fig. 2A to the prediction of an old three-body model of
11Li [20]. The calculated distributions include the effect of the
experimental energy resolution [2]. Although this model has
a rather small two-neutron separation energy of 200 keV and
did not include the recoil effects in a three-body system, it
was able to reproduce fragmentation data at 800 MeV/nucleon
fairly well [21], and Fig. 2A shows that it also produces a
dipole response that is in surprisingly good agreement with the
measurement [2]. The strong peak near 300–400 keV (solid
curve) is produced by the strong attractive interaction among
the neutrons in the final state. If this final-state interaction is
set to zero we obtain the dashed curve.

The measured dipole strength distribution [2] is compared
in Fig. 2B to new calculations that are based on the s23

model [14]. The calculations (with and without the effect
of the final-state nn interaction) include the experimental
energy resolution as done in Ref. [2]. The ground state
of the s23 model has a realistic two-neutron separation of
295 keV and includes recoil effects in the three-body system
exactly (the last term of Eq. (3.1) in Ref. [14]). The recoil
effects are treated approximately in the three-body final
state of the dipole response by ignoring the off-diagonal
component �p1 · �p2/(Acm) (the last term in Eq. (3.3) of
Ref. [14]), whereas the diagonal term �p2

1/(2Acm) +
�p2

2/(2Acm) is included through the reduced mass. With
this approximation, the continuum dipole response can be
computed with the method of Ref. [20]. We have checked
the accuracy of this approximation with the discretized dipole
strength function of Ref. [22] and have confirmed that the
approximation works well for the 11Li nucleus. The calculated
peak (solid curve in Fig. 2B) is higher and shifted slightly
toward higher energies in comparison to the data but the overall
strength is very reasonable.

The total dipole strength that was measured up to a 3 MeV
relative energy is B(E1)exp = 1.42 ± 0.18e2 fm2. The calcu-
lated dipole strength up to 3 MeV, B(E1, Erel � 3 MeV)cal, is
1.26e2 fm2 in the old model (Fig. 2A) and 1.38e2 fm2 in the
new s23 model (Fig. 2B). Since the measured and calculated
dipole strengths shown in Fig. 2 do not differ much, it
seems reasonable to estimate the mean-square core-dineutron
distance associated with the experiment by the simple scaling

〈
r2
c,2n

〉 ≈ B(E1, Erel � 3 MeV)exp

B(E1, Erel � 3 MeV)cal

〈
r2
c,2n

〉
3BM, (6)

in terms of the mean-square distance 〈r2
c,2n〉3BM we obtain in

the three-body model. We note that this scaling method is
consistent with the cluster sum rule but it does not necessarily
require that the total dipole strength of the model is given by
the cluster sum rule. We emphasize that the calculated dipole
strength, which we insert into Eq. (6), is calculated in a model
that respects the Pauli principle, whereas the cluster sum rule
does not.

The scaling method [Eq. (6)] gives essentially the same
result, independent of which of the two models we use (the
old model or the new s23 model). The average value is shown
in the last line of Table II and it represents the mean-square
core-dineutron distance we extract from the measured dipole
strength distribution. The last line of Table II also gives the
difference in the mean-square charge radius of 11Li and 9Li,
which we derive from Eq. (4) by ignoring the spin-orbit
correction.

We note that the RMS core-dineutron distance quoted in
Ref. [2], which is 5.01 ± 0.32 fm, is smaller than the 5.22 fm
value we obtain from the last line of Table II. The smaller size
is the result of identifying the estimated total dipole strength
(1.78e2 fm2) with the cluster sum rule, Eq. (2). An even
smaller size was obtained in Ref. [23] by fitting the measured
dipole strength distribution of Ref. [2], and identifying the
total strength with the cluster rule. The result (Eq. (20) of
Ref. [23]) translates into an RMS core-dineutron distance of
4.73 fm.

From an experimental point of view, extreme care must be
taken when determining the total dipole strength associated
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with excitations of the halo, and when translating this strength
into the size of the halo. This cannot be done accurately without
some theoretical guidance because the dipole strength can only
be resolved at low excitation energies. Moreover, the cluster
sum rule (2), which is sometimes used to determine the size of
the halo, is not exact because it ignores the Pauli blocking
of some of the final states as we discussed earlier. In the
old three-body model of Refs. [3,20], for example, the total
strength obtained by numerically integrating the calculated
dipole strength distribution is 1.57e2 fm2, whereas the cluster
sum rule strength is 1.73e2 fm2. That implies that the total
strength is reduced by 10% compared to the cluster sum rule
because of Pauli blocking.

IV. CHARGE RADIUS MEASUREMENT

The measured charge radius of 11Li is 2.467(37) fm [1]. We
emphasize that the uncertainty in the measured charge radius
is partly due to the absolute calibration of one of the isotopes
(7Li). The difference between the mean-square charge radii
of two different isotopes is therefore much more accurately
determined. This is a great advantage for our discussion of the
halo because the mean-square distance between the 9Li core
and the dineutron is directly related, according to Eq. (4), to the
difference δ〈r2

ch〉 between the mean-square charge radii of 11Li
and 9Li. We have considered this feature in our determination
of the uncertainties on the values of δ〈r2

ch〉 and 〈r2
c,2n〉 shown

in Table II.
The change in the mean-square charge radius from the

reference nucleus 7Li was obtained from the measured isotope
shift δν

exp
IS (A, 7) and the calculated so-called finite mass

correction δνMS
IS (A, 7) according to the expression [1]

〈
r2

ch(A)
〉 − 〈

r2
ch(7)

〉 = δν
exp
IS (A, 7) − δνMS

IS (A, 7)

1566.1kHz
fm2. (7)

The finite mass corrections that were used in Ref. [1] have re-
cently been reevaluated [23]. Combining these new corrections
with the measured isotope shifts of Ref. [1] one obtains the
“revised” charge radius and core-dineutron distance shown

TABLE II. The difference between the measured mean-square
charge radii of 11Li and 9Li [1] and the mean-square distance between
the 9Li core and the two-neutron halo [extracted from Eq. (4) for
〈r2〉so

2n = 0] compared to the results of three-body models (3BM) and
the values extracted from the Coulomb dissociation (CD) experiment
[2]. The assumed charge radius of 9Li was 2.216(35) fm. The last
column shows the mean-square distance between the two valence
neutrons.

Nucleus δ〈r2
ch〉 (fm2) 〈r2

c,2n〉 (fm2) 〈r2
n,n〉 (fm2)

11Li exp [1] 1.175(124) 37.9 ± 3.7
Revised [23] 1.104(85) 35.7 ± 2.6
Old 3BM [3] 0.728 24.35 39.0
s05 3BM [14] 0.541 18.7 42.8
s23 3BM [14] 0.789 26.2 45.9
s32 3BM new 0.895 29.4 51.6
s50 3BM [10] 1.120 36.2 70.1
CD exp. [2] 0.82(11) 27.2 ± 3.5

in Table II. The important quantity to our discussion is the
size of the halo, which is here represented by 〈r2

c,2n〉. We
see that the value we obtain from the Coulomb dissociation
experiment is smaller than the values we obtain from the two
interpretations [1,23] of the charge radius measurement. The
deviation is in both cases a 2σ discrepancy.

In Table II we also give the results we obtain in various
three-body models of 11Li, ranging from the “Old” three-body
model of Ref. [3] to the s50 model of Ref. [10], which gives a
50% s-wave component in the ground state of the two-neutron
halo. It is seen that the s50 model is in agreement with the
charge radius measurement [1], whereas the s23 model of
Ref. [14] (with 23% s waves in the halo ground state) is
consistent with the CD experiment.

Let us finally estimate the spin-orbit correction, Eq. (5),
which we have ignored so far when applying Eq. (4). In the
extreme model, where the two valence neutrons occupy the
(p1/2)2 configuration, the value of 〈l · s〉 is −2, and from Eq. (5)
we obtain 〈r2〉so

2n = 0.113 fm2. In the s23 model, where 61% of
the halo is in the (p1/2)2 configuration, 23% are s waves, and
16% are in higher (l, j ) orbits, we obtain the average value
〈l · s〉 = −1.09 and 〈r2〉so

2n = 0.062 fm2. Inserting this value
into Eq. (4), together with the core-dineutron distance obtained
from the Coulomb dissociation experiment (last line of
Table II), we now obtain the corrected value δ〈r2

ch〉CD =
0.88(11) fm2 for the difference between the mean-square
charge radius of 11Li and 9Li. This implies that the charge
radius of 11Li extracted from the Coulomb dissociation
experiment is 2.41(4) fm, which is consistent with the directly
measured value of 2.467(37) fm [1].

The main part of the uncertainty in the charge radius of
11Li stems from the uncertainty in the charge radius of 9Li.
A better representation of the discrepancy we obtain in our
three-body-model interpretation of the measured charge radius
and dipole response of 11Li is the difference

δ
〈
r2

ch

〉
exp − δ

〈
r2

ch

〉
CD = 1.10(8) − 0.88(11) = 0.22(14) fm2.

(8)

This is the result we obtain when we adopt the revised finite
mass corrections of Ref. [23]. The discrepancy is now of the
order of 1.5σ .

V. MATTER RADIUS

Also quoted in Table II is the calculated mean-square
distance between the two halo neutrons, 〈r2

n,n〉, in 11Li. This
quantity is not probed by the two experiments discussed here.
It is seen that this distance increases dramatically when the
magnitude of the ground-state s-wave component increases.

The RMS matter radius, obtained from an analysis of
interaction cross sections, provides an additional constraint
on the size of the halo. The mean-square matter radius of a
two-neutron halo nucleus is determined by the size of the halo
and the core nucleus as follows:

〈
r2
m(Z,A)

〉 = A − 2

A

〈
r2
m(Z,A − 2)

〉

+ 2(A − 2)

A2

〈
r2
c,2n

〉 + 1

2A

〈
r2
n,n

〉
. (9)
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FIG. 3. Error bands on the size of the two-neutron halo in 11Li
obtained from the Coulomb dissociation experiment [2] B(E1)],
the charge radius [1] (rcharge), and the matter radius [24] (rmatter).
The results obtained in three-body models, with 5–50% s-wave
components, are indicated by diamonds.

The RMS radii obtained in Ref. [24] are 2.43 ± 0.02 and
3.27 ± 0.24 fm, respectively, for 9Li and 11Li. From the halo
distances given in Table II and the quoted matter radius of
9Li we obtain a 11Li RMS matter radius of 3.29 fm in the
s23 model. Thus the s23 model agrees with the matter radius
and also with the strength of the dipole response but the charge
radius is too small compared with the measured value. The s50
model, however, agrees with the charge radius measurement,
but the matter radius (which is 3.66 fm) and the dipole strength
are too large compared to experimental values.

The constraints on the mean-square distances of the two-
neutron halo obtained from the measurements of the charge
radius, the dipole response, and the matter radius of 11Li are
illustrated in Fig. 3 together with the predictions of the three-
body models. The limits from the charge radius are based
on the revised values [23] in Table II and do not include the
correction from the spin-orbit charge density. That correction
may reduce the charge radius limits on 〈r2

c,2n〉 by 1.9 fm2,
according to Eq. (4), if we adopt the spin-orbit correction
〈r2〉so

2n = 0.062 fm2, which we obtained in the s23 model.
There is unfortunately some disagreement about the value

of the matter radius that has been extracted from reaction
data. An example is Ref. [25] where RMS radii of 2.30 and
3.53 ± 06 fm were obtained for 9Li and 11Li, respectively. This
constraint provides a lower limit that is close to the upper limit
of the matter radius shown in Fig. 3, and it would therefore
favor the s50 model over the s23 model. However, we do
not think this is a reasonable solution because the s50 model

produces a dipole response that has roughly a 33% larger
strength than what has been observed (compare the values of
〈r2

c,2n〉 shown in Table II).

VI. FINAL REMARKS

We think that the 1.5σ discrepancy we obtain in our three-
body model interpretation of the measured charge radius and
dipole response of 11Li is most likely caused by the neglect
of core polarization. Actually, it may seem surprising that the
effect of core polarization is not much more dramatic.

To estimate the effect of core polarization, we have
performed Skyrme Hartree-Fock calculations for 9Li and 11Li
using the filling approximation and the SGII interaction.
The results show that the mean-square charge radius of 11Li
increases by 0.3 fm2 from that of 9Li because of the core
polarization effect, which is caused by the proton-neutron
interaction when the valence neutrons occupy p waves,
whereas it increases by about 0.2 fm2 for s waves. This
accounts roughly for the discrepancy, Eq. (8), between the
charge radius and the Coulomb dissociation experiment.

We conclude that it would be desirable to extend the
three-body model so that one can consider the effect of core
polarization in a consistent way. Work in this direction has
already been done for the ground state of 11Li [26], and it
is also being pursued by other groups [27]. The work by
Varga et al. [26] shows that core polarization does play a
significant role in their microscopic cluster model calculation
of the charge radius of 11Li. This can be seen in Fig. 2 of
Ref. [1], where their results, with and without the effect of
core polarization, are compared to the measured charge radius.
A further test of such models is provided by the measured
quadrupole moments of 9Li and 11Li [8], and by the dipole
response that was extracted from Coulomb dissociation data
[2]. In this connection, it would also be very useful to test the
consistency of the measured charge radius and dipole response
of 6He because the effect of core polarization should be much
smaller for an α core.
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