45,725 research outputs found
Improving Stochastic Estimator Techniques for Disconnected Diagrams
Disconnected diagrams are expected to be sensitive to the inclusion of
dynamical fermions. We present a feasibility study for the observation of such
effects on the nucleonic matrix elements of the axial vector current, using
SESAM full QCD vacuum configurations with Wilson fermions on
lattices, at . Starting from the standard methods developed by the
Kentucky and Tsukuba groups, we investigate the improvement from various
refinements thereof.Comment: One author added. Contribution to Lattice 1997, 3 pages LaTex, to
appear in Nucl. Phys. B (Proc. Suppl.
Phase equilibrium in two orbital model under magnetic field
The phase equilibrium in manganites under magnetic field is studied using a
two orbital model, based on the equivalent chemical potential principle for the
competitive phases. We focus on the magnetic field induced melting process of
CE phase in half-doped manganites. It is predicted that the homogenous CE phase
begins to decompose into coexisting ferromagnetic phase and CE phase once the
magnetic field exceeds the threshold field. In a more quantitative way, the
volume fractions of the two competitive phases in the phase separation regime
are evaluated.Comment: 4 pages, 4 figure
A penalty approach for nonlinear optimization with discrete design variables
Introduced here is a simple approach to minimization problems with discrete design variables by modifying the penaly function approach of converting the constrained problems into sequential unconstrained minimization technique (SUMT) problems. It was discovered, during the course of the present work, that a similar idea was suggested by Marcal and Gellatly. However, no further work has been encountered. A brief description of the SUMT is presented. The form of the penalty function for the discrete-valued design variables and strategy used for the implementation of the procedure is discussed next. Finally, several design examples are used to demonstrate the procedure, and results are compared with the ones available in the literature
Binding between endohedral Na atoms in Si clathrate I; a first principles study
We investigate the binding nature of the endohedral sodium atoms with the
ensity functional theory methods, presuming that the clathrate I consists of a
sheaf of one-dimensional connections of Na@Si cages interleaved in three
perpendicular directions. Each sodium atom loses 30% of the 3s charge to
the frame, forming an ionic bond with the cage atoms; the rest of the electron
contributes to the covalent bond between the nearest Na atoms. The presumption
is proved to be valid; the configuration of the two Na atoms in the nearest
Si cages is more stable by 0.189 eV than that in the Si and
Si cages. The energy of the beads of the two distorted Na atoms is more
stable by 0.104 eV than that of the two infinitely separated Na atoms. The
covalent bond explains both the preferential occupancies in the Si cages
and the low anisotropic displacement parameters of the endohedral atoms in the
Si cages in the [100] directions of the clathrate I.Comment: First page: Affiliation added to PDF and PS versio
XMM-Newton Observations of NGC 507: Super-solar Metal Abundances in the Hot ISM
We present the results of the X-ray XMM-Newton observations of NGC 507, a
dominant elliptical galaxy in a small group of galaxies, and report
'super-solar' metal abundances of both Fe and a-elements in the hot ISM of this
galaxy. We find Z_Fe = 2-3 times solar inside the D25 ellipse of NGC 507. This
is the highest Z_Fe reported so far for the hot halo of an elliptical galaxy;
this high Iron abundance is fully consistent with the predictions of stellar
evolution models, which include the yield of both type II and Ia supernovae.
The spatially resolved, high quality XMM spectra provide enough statistics to
formally require at least three emission components: two soft thermal
components indicating a range of temperatures in the hot ISM, plus a harder
component, consistent with the integrated output of low mass X-ray binaries
(LMXBs). The abundance of a-elements (most accurately determined by Si) is also
found to be super-solar. The a-elements to Fe abundance ratio is close to the
solar ratio, suggesting that ~70% of the Iron mass in the hot ISM was
originated from SNe Type Ia. The a-element to Fe abundance ratio remains
constant out to at least 100 kpc, indicating that SNe Type II and Ia ejecta are
well mixed in a scale much larger than the extent of the stellar body.Comment: 29 pages, 6 figures, Accepted in ApJ (v613, Oct. 1, 2004); Minor
revisions after referee's comments; A high-resolution pdf file available at
http://hea-www.harvard.edu/~kim/pap/N507_XMM.pd
Comparison between Windowed FFT and Hilbert-Huang Transform for Analyzing Time Series with Poissonian Fluctuations: A Case Study
Hilbert-Huang Transform (HHT) is a novel data analysis technique for
nonlinear and non-stationary data. We present a time-frequency analysis of both
simulated light curves and an X-ray burst from the X-ray burster 4U 1702-429
with both the HHT and the Windowed Fast Fourier Transform (WFFT) methods. Our
results show that the HHT method has failed in all cases for light curves with
Poissonian fluctuations which are typical for all photon counting instruments
used in astronomy, whereas the WFFT method can sensitively detect the periodic
signals in the presence of Poissonian fluctuations; the only drawback of the
WFFT method is that it cannot detect sharp frequency variations accurately.Comment: 10 pages, 12 figure
Z-Selectivity in Olefin Metathesis with Chelated Ru Catalysts: Computational Studies of Mechanism and Selectivity
The mechanism and origins of Z-selectivity in olefin metathesis with chelated Ru catalysts were explored using density functional theory. The olefin approaches from the “side” position of the chelated Ru catalysts, in contrast to reactions with previous unchelated Ru catalysts that favor the bottom-bound pathway. Steric repulsions between the substituents on the olefin and the N-substituent on the N-heterocyclic carbene ligand lead to highly selective formation of the Z product
Shot noise of inelastic tunneling through quantum dot systems
We present a theoretical analysis of the effect of inelastic electron
scattering on current and its fluctuations in a mesoscopic quantum dot (QD)
connected to two leads, based on a recently developed nonperturbative technique
involving the approximate mapping of the many-body electron-phonon coupling
problem onto a multichannel single-electron scattering problem. In this, we
apply the B\"uttiker scattering theory of shot noise for a two-terminal
mesoscopic device to the multichannel case with differing weight factors and
examine zero-frequency shot noise for two special cases: (i) a single-molecule
QD and (ii) coupled semiconductor QDs. The nonequilibrium Green's function
method facilitates calculation of single-electron transmission and reflection
amplitudes for inelastic processes under nonequilibrium conditions in the
mapping model. For the single-molecule QD we find that, in the presence of the
electron-phonon interaction, both differential conductance and differential
shot noise display additional peaks as bias-voltage increases due to
phonon-assisted processes. In the case of coupled QDs, our nonperturbative
calculations account for the electron-phonon interaction on an equal footing
with couplings to the leads, as well as the coupling between the two dots. Our
results exhibit oscillations in both the current and shot noise as functions of
the energy difference between the two QDs, resulting from the spontaneous
emission of phonons in the nonlinear transport process. In the "zero-phonon"
resonant tunneling regime, the shot noise exhibits a double peak, while in the
"one-phonon" region, only a single peak appears.Comment: 10 pages, 6 figures, some minor changes, accepted by Phys. Rev.
Amplifier for scanning tunneling microscopy at MHz frequencies
Conventional scanning tunneling microscopy (STM) is limited to a bandwidth of
circa 1kHz around DC. Here, we develop, build and test a novel amplifier
circuit capable of measuring the tunneling current in the MHz regime while
simultaneously performing conventional STM measurements. This is achieved with
an amplifier circuit including a LC tank with a quality factor exceeding 600
and a home-built, low-noise high electron mobility transistor (HEMT). The
amplifier circuit functions while simultaneously scanning with atomic
resolution in the tunneling regime, i.e. at junction resistances in the range
of giga-ohms, and down towards point contact spectroscopy. To enable high
signal-to-noise and meet all technical requirements for the inclusion in a
commercial low temperature, ultra-high vacuum STM, we use superconducting
cross-wound inductors and choose materials and circuit elements with low heat
load. We demonstrate the high performance of the amplifier by spatially mapping
the Poissonian noise of tunneling electrons on an atomically clean Au(111)
surface. We also show differential conductance spectroscopy measurements at
3MHz, demonstrating superior performance over conventional spectroscopy
techniques. Further, our technology could be used to perform impedance matched
spin resonance and distinguish Majorana modes from more conventional edge
states
- …