3,709 research outputs found

    Magnetoresistance of a 2-dimensional electron gas in a random magnetic field

    Full text link
    We report magnetoresistance measurements on a two-dimensional electron gas (2DEG) made from a high mobility GaAs/AlGaAs heterostructure, where the externally applied magnetic field was expelled from regions of the semiconductor by means of superconducting lead grains randomly distributed on the surface of the sample. A theoretical explanation in excellent agreement with the experiment is given within the framework of the semiclassical Boltzmann equation.Comment: REVTEX 3.0, 11 pages, 3 Postscript figures appended. The manuscript can also be obtained from our World Wide Web server: http://roemer.fys.ku.dk/randmag.ht

    Failure of conductance quantization in two-dimensional topological insulators due to non-magnetic impurities

    Full text link
    Despite topological protection and the absence of magnetic impurities, two-dimensional topological insulators display quantized conductance only in surprisingly short channels, which can be as short as 100 nm for atomically thin materials. We show that the combined action of short-range nonmagnetic impurities located near the edges and on site electron-electron interactions effectively creates noncollinear magnetic scatterers, and, hence, results in strong backscattering. The mechanism causes deviations from quantization even at zero temperature and for a modest strength of electron-electron interactions. Our theory provides a straightforward conceptual framework to explain experimental results, especially those in atomically thin crystals, plagued with short-range edge disorder.Comment: 8 pages, 9 figures, 5 appendice

    Non-local transport and the hydrodynamic shear viscosity in graphene

    Get PDF
    Motivated by recent experimental progress in preparing encapsulated graphene sheets with ultra-high mobilities up to room temperature, we present a theoretical study of dc transport in doped graphene in the hydrodynamic regime. By using the continuity and Navier-Stokes equations, we demonstrate analytically that measurements of non-local resistances in multi-terminal Hall bar devices can be used to extract the hydrodynamic shear viscosity of the two-dimensional (2D) electron liquid in graphene. We also discuss how to probe the viscosity-dominated hydrodynamic transport regime by scanning probe potentiometry and magnetometry. Our approach enables measurements of the viscosity of any 2D electron liquid in the hydrodynamic transport regime.Comment: 12 pages, 4 multi-panel figure

    Novel A-B type oscillations in a 2-D electron gas in inhomogenous magnetic fields

    Full text link
    We present results from a quantum and semiclassical theoretical study of the ρxy\rho_{xy} and ρxx\rho_{xx} resistivities of a high mobility 2-D electron gas in the presence of a dilute random distribution of tubes with magnetic flux Φ\Phi and radius RR, for arbitrary values of kfRk_f R and F=eΦ/hF=e\Phi/h. We report on novel Aharonov-Bohm type oscillations in ρxy\rho_{xy} and ρxx\rho_{xx}, related to degenerate quantum flux tube resonances, that satisfy the selection rule (kfR)2=4F(n+12){(k_fR)}^2=4F(n+{1\over 2}), with nn an integer. We discuss possible experimental conditions where these oscillations may be observed.Comment: 11 pages REVTE

    Universal Dynamic Conductivity and Quantized Visible Opacity of Suspended Graphene

    Full text link
    We show that the optical transparency of suspended graphene is defined by the fine structure constant, alpha, the parameter that describes coupling between light and relativistic electrons and is traditionally associated with quantum electrodynamics rather than condensed matter physics. Despite being only one atom thick, graphene is found to absorb a significant (pi times alpha=2.3%) fraction of incident white light, which is a consequence of graphene's unique electronic structure. This value translates into universal dynamic conductivity G =e^2/4h_bar within a few percent accuracy

    Colossal infrared and terahertz magneto-optical activity in a two-dimensional Dirac material

    Full text link
    When two-dimensional electron gases (2DEGs) are exposed to magnetic field, they resonantly absorb electromagnetic radiation via electronic transitions between Landau levels (LLs). In 2DEGs with a Dirac spectrum, such as graphene, theory predicts an exceptionally high infrared magneto-absorption, even at zero doping. However, the measured LL magneto-optical effects in graphene have been much weaker than expected because of imperfections in the samples available so far for such experiments. Here we measure magneto-transmission and Faraday rotation in high-mobility encapsulated monolayer graphene using a custom designed setup for magneto-infrared microspectroscopy. Our results show a strongly enhanced magneto-optical activity in the infrared and terahertz ranges characterized by a maximum allowed (50%) absorption of light, a 100% magnetic circular dichroism as well as a record high Faraday rotation. Considering that sizeable effects have been already observed at routinely achievable magnetic fields, our findings demonstrate a new potential of magnetic tuning in 2D Dirac materials for long-wavelength optoelectronics and plasmonics.Comment: 14 pages, 4 figure

    Stacking boundaries and transport in bilayer graphene

    Get PDF
    Pristine bilayer graphene behaves in some instances as an insulator with a transport gap of a few meV. This behaviour has been interpreted as the result of an intrinsic electronic instability induced by many-body correlations. Intriguingly, however, some samples of similar mobility exhibit good metallic properties, with a minimal conductivity of the order of 2e2/h2e^2/h. Here we propose an explanation for this dichotomy, which is unrelated to electron interactions and based instead on the reversible formation of boundaries between stacking domains (`solitons'). We argue, using a numerical analysis, that the hallmark features of the previously inferred many-body insulating state can be explained by scattering on boundaries between domains with different stacking order (AB and BA). We furthermore present experimental evidence, reinforcing our interpretation, of reversible switching between a metallic and an insulating regime in suspended bilayers when subjected to thermal cycling or high current annealing.Comment: 13 pages, 15 figures. Published version (Nano Letters

    Electron hydrodynamics dilemma: whirlpools or no whirlpools

    Get PDF
    In highly viscous electron systems such as, for example, high quality graphene above liquid nitrogen temperature, a linear response to applied electric current becomes essentially nonlocal, which can give rise to a number of new and counterintuitive phenomena including negative nonlocal resistance and current whirlpools. It has also been shown that, although both effects originate from high electron viscosity, a negative voltage drop does not principally require current backflow. In this work, we study the role of geometry on viscous flow and show that confinement effects and relative positions of injector and collector contacts play a pivotal role in the occurrence of whirlpools. Certain geometries may exhibit backflow at arbitrarily small values of the electron viscosity, whereas others require a specific threshold value for whirlpools to emerge

    Raman Fingerprint of Charged Impurities in Graphene

    Full text link
    We report strong variations in the Raman spectra for different single-layer graphene samples obtained by micromechanical cleavage, which reveals the presence of excess charges, even in the absence of intentional doping. Doping concentrations up to ~10^13 cm-2 are estimated from the G peak shift and width, and the variation of both position and relative intensity of the second order 2D peak. Asymmetric G peaks indicate charge inhomogeneity on the scale of less than 1 micron.Comment: 3 pages, 5 figure
    corecore