1,201 research outputs found

    The effect of salts on the derivatization and chromatography of amino acids

    Get PDF
    Effect of salts on derivatization and chromatography of amino acid

    Assessing the efficiency of first-principles basin-hopping sampling

    Full text link
    We present a systematic performance analysis of first-principles basin-hopping (BH) runs, with the target to identify all low-energy isomers of small Si and Cu clusters described within density-functional theory. As representative and widely employed move classes we focus on single-particle and collective moves, in which one or all atoms in the cluster at once are displaced in a random direction by some prescribed move distance, respectively. The analysis provides detailed insights into the bottlenecks and governing factors for the sampling efficiency, as well as simple rules-of-thumb for near-optimum move settings, that are intriguingly independent of the distinctly different chemistry of Si and Cu. At corresponding settings, the observed performance of the BH algorithm employing two simple, general-purpose move classes is already very good, and for the small systems studied essentially limited by frequent revisits to a few dominant isomers.Comment: 11 pages including 8 figures; related publications can be found at http://www.fhi-berlin.mpg.de/th/th.htm

    Single‐trial regression of spatial exploration behavior indicates posterior EEG alpha modulation to reflect egocentric coding

    Full text link
    Learning to navigate uncharted terrain is a key cognitive ability that emerges as a deeply embodied process, with eye movements and locomotion proving most useful to sample the environment. We studied healthy human participants during active spatial learning of room-scale virtual reality (VR) mazes. In the invisible maze task, participants wearing a wireless electroencephalography (EEG) headset were free to explore their surroundings, only given the objective to build and foster a mental spatial representation of their environment. Spatial uncertainty was resolved by touching otherwise invisible walls that were briefly rendered visible inside VR, similar to finding your way in the dark. We showcase the capabilities of mobile brain/body imaging using VR, demonstrating several analysis approaches based on general linear models (GLMs) to reveal behavior-dependent brain dynamics. Confirming spatial learning via drawn sketch maps, we employed motion capture to image spatial exploration behavior describing a shift from initial exploration to subsequent exploitation of the mental representation. Using independent component analysis, the current work specifically targeted oscillations in response to wall touches reflecting isolated spatial learning events arising in deep posterior EEG sources located in the retrosplenial complex. Single-trial regression identified significant modulation of alpha oscillations by the immediate, egocentric, exploration behavior. When encountering novel walls, as well as with increasing walking distance between subsequent touches when encountering novel walls, alpha power decreased. We conclude that these oscillations play a prominent role during egocentric evidencing of allocentric spatial hypotheses

    Liquid Feed Injection in a High Density Riser

    Get PDF
    First investigations on liquid feed injection in a high density circulating fluidized bed of FCC particles were done by means of fast responding thermocouples, capacitance and conductivity probes. The results imply very limited radial mixing between dry solids, wet solids and liquid for the injection parallel to the hot up-streaming gas-solid flow

    Nature of Ar bonding to small Co_n^+ clusters and its effect on the structure determination by far-infrared absorption spectroscopy

    Full text link
    Far-infrared vibrational spectroscopy by multiple photon dissociation has proven to be a very useful technique for the structural fingerprinting of small metal clusters. Contrary to previous studies on cationic V, Nb and Ta clusters, measured vibrational spectra of small cationic cobalt clusters show a strong dependence on the number of adsorbed Ar probe atoms, which increases with decreasing cluster size. Focusing on the series Co_4^+ to Co_8^+ we therefore use density-functional theory to analyze the nature of the Ar-Co_n^+ bond and its role for the vibrational spectra. In a first step, energetically low-lying isomer structures are identified through first-principles basin-hopping sampling runs and their vibrational spectra computed for a varying number of adsorbed Ar atoms. A comparison of these fingerprints with the experimental data enables in some cases a unique assignment of the cluster structure. Independent of the specific low-lying isomer, we obtain a pronounced increase of the Ar binding energy for the smallest cluster sizes, which correlates nicely with the observed increased influence of the Ar probe atoms on the IR spectra. Further analysis of the electronic structure motivates a simple electrostatic picture that not only explains this binding energy trend, but also why the influence of the rare-gas atom is much stronger than in the previously studied systems.Comment: 12 pages including 10 figures; related publications can be found at http://www.fhi-berlin.mpg.de/th/th.htm

    Monotonic Distributive Semilattices

    Get PDF
    In the study of algebras related to non-classical logics, (distributive) semilattices are always present in the background. For example, the algebraic semantic of the {→, ∧, ⊤}-fragment of intuitionistic logic is the variety of implicative meet-semilattices (Chellas 1980; Hansen 2003). In this paper we introduce and study the class of distributive meet-semilattices endowed with a monotonic modal operator m. We study the representation theory of these algebras using the theory of canonical extensions and we give a topological duality for them. Also, we show how our new duality extends to some particular subclasses.Fil: Celani, Sergio Arturo. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional del Centro de la Provincia de Buenos Aires. Facultad de Ciencias Exactas. Departamento de Matemática; ArgentinaFil: Menchón, María Paula. Universidad Nacional del Centro de la Provincia de Buenos Aires. Facultad de Ciencias Exactas. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentin

    The invisible maze task (IMT): Interactive exploration of sparse virtual environments to investigate action-driven formation of spatial representations

    Full text link
    © Springer Nature Switzerland AG 2018. The neuroscientific study of human navigation has been constrained by the prerequisite of traditional brain imaging studies that require participants to remain stationary. Such imaging approaches neglect a central component that characterizes navigation - the multisensory experience of self-movement. Navigation by active movement through space combines multisensory perception with internally generated self-motion cues. We investigated the spatial microgenesis during free ambulatory exploration of interactive sparse virtual environments using motion capture synchronized to high resolution electroencephalographic (EEG) data as well AS psychometric and self-report measures. In such environments, map-like allocentric representations must be constructed out of transient, egocentric first-person perspective 3-D spatial information. Considering individual differences of spatial learning ability, we studied if changes in exploration behavior coincide with spatial learning of an environment. To this end, we analyzed the quality of sketch maps (a description of spatial learning) that were produced after repeated learning trials for differently complex maze environments. We observed significant changes in active exploration behavior from the first to the last exploration of a maze: a decrease in time spent in the maze predicted an increase in subsequent sketch map quality. Furthermore, individual differences in spatial abilities as well as differences in the level of experienced immersion had an impact on the quality of spatial learning. Our results demonstrate converging evidence of observable behavioral changes associated with spatial learning in a framework that allows the study of cortical dynamics of navigation

    Efficient computation of min and max sensor values in multihop networks

    Get PDF
    Consider a wireless sensor network (WSN) where a broadcast from a sensor node does not reach all sensor nodes in the network; such networks are often called multihop networks. Sensor nodes take sensor readings but individual sensor readings are not very important. It is important however to compute aggregated quantities of these sensor readings. The minimum and maximum of all sensor readings at an instant are often interesting because they indicate abnormal behavior, for example if the maximum temperature is very high then it may be that a fire has broken out. We propose an algorithm for computing the min or max of sensor readings in a multihop network. This algorithm has the particularly interesting property of having a time complexity that does not depend on the number of sensor nodes; only the network diameter and the range of the value domain of sensor readings matter
    corecore