4,282 research outputs found
QCD and Hadron Dynamics
Perturbative QCD predicts and describes various features of multihadron
production. An amazing similarity between observable hadron systems and
calculable underlying parton ensembles justifies the attempts to use the
language of quarks and gluons down to small momentum scales, to approach the
profound problems that are commonly viewed as being entirely non-perturbative.Comment: Talk at the Royal Society meeting "Structure of Matter", London, May
200
CMS Barrel Pixel Detector Overview
The pixel detector is the innermost tracking device of the CMS experiment at
the LHC. It is built from two independent sub devices, the pixel barrel and the
end disks. The barrel consists of three concentric layers around the beam pipe
with mean radii of 4.4, 7.3 and 10.2 cm. There are two end disks on each side
of the interaction point at 34.5 cm and 46.5 cm. This article gives an overview
of the pixel barrel detector, its mechanical support structure, electronics
components, services and its expected performance.Comment: Proceedings of Vertex06, 15th International Workshop on Vertex
Detector
Persistence of Covalent Bonding in Liquid Silicon Probed by Inelastic X-ray Scattering
Metallic liquid silicon at 1787K is investigated using x-ray Compton
scattering. An excellent agreement is found between the measurements and the
corresponding Car-Parrinello molecular dynamics simulations. Our results show
persistence of covalent bonding in liquid silicon and provide support for the
occurrence of theoretically predicted liquid-liquid phase transition in
supercooled liquid states. The population of covalent bond pairs in liquid
silicon is estimated to be 17% via a maximally-localized Wannier function
analysis. Compton scattering is shown to be a sensitive probe of bonding
effects in the liquid state.Comment: 5pages, 3 postscript figure
Elastic Pion Scattering on the Deuteron in a Multiple Scattering Model
Pion elastic scattering on deuterium is studied in the KMT multiple
scattering approach developed in momentum space. Using a Paris wave function
and the same methods and approximations as commonly used in pion scattering on
heavier nuclei excellent agreement with differential cross section data is
obtained for a wide range of pion energies. Only for MeV and very
backward angles, discrepancies appear that are reminiscent of disagreements in
pion scattering on He, H, and He. At low energies the second order
corrections have been included. Polarization observables are studied in detail.
While tensor analyzing powers are well reproduced, vector analyzing powers
exhibit dramatic discrepancies.Comment: 25 pages LATEX and 9 postscript figures in a self-extracting uufile
archiv
Multi-Jet Event Rates in Deep Inelastic Scattering and Determination of the Strong Coupling Constant
Jet event rates in deep inelastic ep scattering at HERA are investigated
applying the modified JADE jet algorithm. The analysis uses data taken with the
H1 detector in 1994 and 1995. The data are corrected for detector and
hadronization effects and then compared with perturbative QCD predictions using
next-to-leading order calculations. The strong coupling constant alpha_S(M_Z^2)
is determined evaluating the jet event rates. Values of alpha_S(Q^2) are
extracted in four different bins of the negative squared momentum
transfer~\qq in the range from 40 GeV2 to 4000 GeV2. A combined fit of the
renormalization group equation to these several alpha_S(Q^2) values results in
alpha_S(M_Z^2) = 0.117+-0.003(stat)+0.009-0.013(syst)+0.006(jet algorithm).Comment: 17 pages, 4 figures, 3 tables, this version to appear in Eur. Phys.
J.; it replaces first posted hep-ex/9807019 which had incorrect figure 4
Multiplicity Structure of the Hadronic Final State in Diffractive Deep-Inelastic Scattering at HERA
The multiplicity structure of the hadronic system X produced in
deep-inelastic processes at HERA of the type ep -> eXY, where Y is a hadronic
system with mass M_Y< 1.6 GeV and where the squared momentum transfer at the pY
vertex, t, is limited to |t|<1 GeV^2, is studied as a function of the invariant
mass M_X of the system X. Results are presented on multiplicity distributions
and multiplicity moments, rapidity spectra and forward-backward correlations in
the centre-of-mass system of X. The data are compared to results in e+e-
annihilation, fixed-target lepton-nucleon collisions, hadro-produced
diffractive final states and to non-diffractive hadron-hadron collisions. The
comparison suggests a production mechanism of virtual photon dissociation which
involves a mixture of partonic states and a significant gluon content. The data
are well described by a model, based on a QCD-Regge analysis of the diffractive
structure function, which assumes a large hard gluonic component of the
colourless exchange at low Q^2. A model with soft colour interactions is also
successful.Comment: 22 pages, 4 figures, submitted to Eur. Phys. J., error in first
submission - omitted bibliograph
Differential (2+1) Jet Event Rates and Determination of alpha_s in Deep Inelastic Scattering at HERA
Events with a (2+1) jet topology in deep-inelastic scattering at HERA are
studied in the kinematic range 200 < Q^2< 10,000 GeV^2. The rate of (2+1) jet
events has been determined with the modified JADE jet algorithm as a function
of the jet resolution parameter and is compared with the predictions of Monte
Carlo models. In addition, the event rate is corrected for both hadronization
and detector effects and is compared with next-to-leading order QCD
calculations. A value of the strong coupling constant of alpha_s(M_Z^2)=
0.118+- 0.002 (stat.)^(+0.007)_(-0.008) (syst.)^(+0.007)_(-0.006) (theory) is
extracted. The systematic error includes uncertainties in the calorimeter
energy calibration, in the description of the data by current Monte Carlo
models, and in the knowledge of the parton densities. The theoretical error is
dominated by the renormalization scale ambiguity.Comment: 25 pages, 6 figures, 3 tables, submitted to Eur. Phys.
Energy Flow in the Hadronic Final State of Diffractive and Non-Diffractive Deep-Inelastic Scattering at HERA
An investigation of the hadronic final state in diffractive and
non--diffractive deep--inelastic electron--proton scattering at HERA is
presented, where diffractive data are selected experimentally by demanding a
large gap in pseudo --rapidity around the proton remnant direction. The
transverse energy flow in the hadronic final state is evaluated using a set of
estimators which quantify topological properties. Using available Monte Carlo
QCD calculations, it is demonstrated that the final state in diffractive DIS
exhibits the features expected if the interaction is interpreted as the
scattering of an electron off a current quark with associated effects of
perturbative QCD. A model in which deep--inelastic diffraction is taken to be
the exchange of a pomeron with partonic structure is found to reproduce the
measurements well. Models for deep--inelastic scattering, in which a
sizeable diffractive contribution is present because of non--perturbative
effects in the production of the hadronic final state, reproduce the general
tendencies of the data but in all give a worse description.Comment: 22 pages, latex, 6 Figures appended as uuencoded fil
- …