24,112 research outputs found

    Approximation of corner polyhedra with families of intersection cuts

    Full text link
    We study the problem of approximating the corner polyhedron using intersection cuts derived from families of lattice-free sets in Rn\mathbb{R}^n. In particular, we look at the problem of characterizing families that approximate the corner polyhedron up to a constant factor, which depends only on nn and not the data or dimension of the corner polyhedron. The literature already contains several results in this direction. In this paper, we use the maximum number of facets of lattice-free sets in a family as a measure of its complexity and precisely characterize the level of complexity of a family required for constant factor approximations. As one of the main results, we show that, for each natural number nn, a corner polyhedron with nn basic integer variables and an arbitrary number of continuous non-basic variables is approximated up to a constant factor by intersection cuts from lattice-free sets with at most ii facets if i>2n−1i> 2^{n-1} and that no such approximation is possible if i≤2n−1i \leq 2^{n-1}. When the approximation factor is allowed to depend on the denominator of the fractional vertex of the linear relaxation of the corner polyhedron, we show that the threshold is i>ni > n versus i≤ni \leq n. The tools introduced for proving such results are of independent interest for studying intersection cuts

    Three-dimensional MgB2_{2}-type superconductivity in hole-doped diamond

    Full text link
    We substantiate by calculations that the recently discovered superconductivity below 4 K in 3% boron-doped diamond is caused by electron-phonon coupling of the same type as in MgB2_2, albeit in 3 dimensions. Holes at the top of the zone-centered, degenerate σ\sigma-bonding valence band couple strongly to the optical bond-stretching modes. The increase from 2 to 3 dimensions reduces the mode-softening crucial for TcT_{c} reaching 40 K in MgB2._{2}. Even if diamond had the same \emph{bare} coupling constant as MgB2,_{2}, which could be achieved with 10% doping, TcT_{c} would only be 25 K. Superconductivity above 1 K in Si (Ge) requires hole-doping beyond 5% (10%).Comment: revised version, accepted by PR

    Interplay between nanometer-scale strain variations and externally applied strain in graphene

    Get PDF
    We present a molecular modeling study analyzing nanometer-scale strain variations in graphene as a function of externally applied tensile strain. We consider two different mechanisms that could underlie nanometer-scale strain variations: static perturbations from lattice imperfections of an underlying substrate and thermal fluctuations. For both cases we observe a decrease in the out-of-plane atomic displacements with increasing strain, which is accompanied by an increase in the in-plane displacements. Reflecting the non-linear elastic properties of graphene, both trends together yield a non-monotonic variation of the total displacements with increasing tensile strain. This variation allows to test the role of nanometer-scale strain variations in limiting the carrier mobility of high-quality graphene samples

    First-principles scattering matrices for spin-transport

    Get PDF
    Details are presented of an efficient formalism for calculating transmission and reflection matrices from first principles in layered materials. Within the framework of spin density functional theory and using tight-binding muffin-tin orbitals, scattering matrices are determined by matching the wave-functions at the boundaries between leads which support well-defined scattering states and the scattering region. The calculation scales linearly with the number of principal layers N in the scattering region and as the cube of the number of atoms H in the lateral supercell. For metallic systems for which the required Brillouin zone sampling decreases as H increases, the final scaling goes as H^2*N. In practice, the efficient basis set allows scattering regions for which H^{2}*N ~ 10^6 to be handled. The method is illustrated for Co/Cu multilayers and single interfaces using large lateral supercells (up to 20x20) to model interface disorder. Because the scattering states are explicitly found, ``channel decomposition'' of the interface scattering for clean and disordered interfaces can be performed.Comment: 22 pages, 13 figure

    Inducing spin-dependent tunneling to probe magnetic correlations in optical lattices

    Full text link
    We suggest a simple experimental method for probing antiferromagnetic spin correlations of two-component Fermi gases in optical lattices. The method relies on a spin selective Raman transition to excite atoms of one spin species to their first excited vibrational mode where the tunneling is large. The resulting difference in the tunneling dynamics of the two spin species can then be exploited, to reveal the spin correlations by measuring the number of doubly occupied lattice sites at a later time. We perform quantum Monte Carlo simulations of the spin system and solve the optical lattice dynamics numerically to show how the timed probe can be used to identify antiferromagnetic spin correlations in optical lattices.Comment: 5 pages, 5 figure

    Self-consistency over the charge-density in dynamical mean-field theory: a linear muffin-tin implementation and some physical implications

    Full text link
    We present a simple implementation of the dynamical mean-field theory approach to the electronic structure of strongly correlated materials. This implementation achieves full self-consistency over the charge density, taking into account correlation-induced changes to the total charge density and effective Kohn-Sham Hamiltonian. A linear muffin-tin orbital basis-set is used, and the charge density is computed from moments of the many body momentum-distribution matrix. The calculation of the total energy is also considered, with a proper treatment of high-frequency tails of the Green's function and self-energy. The method is illustrated on two materials with well-localized 4f electrons, insulating cerium sesquioxide Ce2O3 and the gamma-phase of metallic cerium, using the Hubbard-I approximation to the dynamical mean-field self-energy. The momentum-integrated spectral function and momentum-resolved dispersion of the Hubbard bands are calculated, as well as the volume-dependence of the total energy. We show that full self-consistency over the charge density, taking into account its modification by strong correlations, can be important for the computation of both thermodynamical and spectral properties, particularly in the case of the oxide material.Comment: 20 pages, 6 figures (submitted in The Physical Review B

    High energy cosmic-ray interactions with particles from the Sun

    Full text link
    Cosmic-ray protons with energies above 101610^{16} eV passing near the Sun may interact with photons emitted by the Sun and be excited to a Δ+\Delta^+ resonance. When the Δ+\Delta^+ decays, it produces pions which further decay to muons and photons which may be detected with terrestrial detectors. A flux of muons, photon pairs (from π0\pi^0 decay), or individual high-energy photons coming from near the Sun would be a rather striking signature, and the flux of these particles is a fairly direct measure of the flux of cosmic-ray nucleons, independent of the cosmic-ray composition. In a solid angle within 15∘15^\circ around the Sun the flux of photon pairs is about \SI{1.3e-3}{} particles/(km2⋅^2\cdotyr), while the flux of muons is about \SI{0.33e-3}{} particles/(km2⋅^2\cdotyr). This is beyond the reach of current detectors like the Telescope Array, Auger, KASCADE-Grande or IceCube. However, the muon flux might be detectable by next-generation air shower arrays or neutrino detectors such as ARIANNA or ARA. We discuss the experimental prospects in some detail. Other cosmic-ray interactions occuring close to the Sun are also briefly discussed.Comment: 8 pages, 11 figure

    First principles theoretical studies of half-metallic ferromagnetism in CrTe

    Full text link
    Using full-potential linear augmented plane wave method (FP-LAPW) and the density functional theory, we have carried out a systematic investigation of the electronic, magnetic, and cohesive properties of the chalcogenide CrTe in three competing structures: rock-salt (RS), zinc blende (ZB) and the NiAs-type (NA) hexagonal. Although the ground state is of NA structure, RS and ZB are interesting in that these fcc-based structures, which can possibly be grown on many semiconductor substrates, exhibit half-metallic phases above some critical values of the lattice parameter. We find that the NA structure is not half-metallic at its equilibrium volume, while both ZB and RS structures are. The RS structure is more stable than the ZB, with an energy that is lower by 0.25 eV/atom. While confirming previous results on the half-metallic phase in ZB structure, we provide hitherto unreported results on the half-metallic RS phase, with a gap in the minority channel and a magnetic moment of 4.0 μB\mu_{B} per formula unit. A comparison of total energies for the ferromagnetic (FM), non-magnetic (NM), and antiferromagnetic (AFM) configurations shows the lowest energy configuration to be FM for CrTe in all the three structures. The FP-LAPW calculations are supplemented by linear muffin-tin orbital (LMTO) calculations using both local density approximation (LDA) and LDA+U method. The exchange interactions and the Curie temperatures calculated via the linear response method in ZB and RS CrTe are compared over a wide range of the lattice parameter. The calculated Curie temperatures for the RS phase are consistently higher than those for the ZB phase.Comment: 11 pages, 14 figure

    Three-loop HTL gluon thermodynamics at intermediate coupling

    Get PDF
    We calculate the thermodynamic functions of pure-glue QCD to three-loop order using the hard-thermal-loop perturbation theory (HTLpt) reorganization of finite temperature quantum field theory. We show that at three-loop order hard-thermal-loop perturbation theory is compatible with lattice results for the pressure, energy density, and entropy down to temperatures T≃3  TcT\simeq3\;T_c. Our results suggest that HTLpt provides a systematic framework that can used to calculate static and dynamic quantities for temperatures relevant at LHC.Comment: 24 pages, 13 figs. 2nd version: improved discussion and fixing typos. Published in JHE
    • …
    corecore