3,127 research outputs found
Baryon Charge Radii and Quadrupole Moments in the 1/N_c Expansion: The 3-Flavor Case
We develop a straightforward method to compute charge radii and quadrupole
moments for baryons both with and without strangeness, when the number of QCD
color charges is N_c. The minimal assumption of the single-photon exchange
ansatz implies that only two operators are required to describe these baryon
observables. Our results are presented so that SU(3) flavor and isospin
symmetry breaking can be introduced according to any desired specification,
although we also present results obtained from two patterns suggested by the
quark model with gluon exchange interactions. The method also permits to
extract a number of model-independent relations; a sample is r^2_Lambda / r_n^2
= 3/(N_c+3), independent of SU(3) symmetry breaking.Comment: 30 pages, no figures, REVTeX
Bayesian hierarchical clustering for studying cancer gene expression data with unknown statistics
Clustering analysis is an important tool in studying gene expression data. The Bayesian hierarchical clustering (BHC) algorithm can automatically infer the number of clusters and uses Bayesian model selection to improve clustering quality. In this paper, we present an extension of the BHC algorithm. Our Gaussian BHC (GBHC) algorithm represents data as a mixture of Gaussian distributions. It uses normal-gamma distribution as a conjugate prior on the mean and precision of each of the Gaussian components. We tested GBHC over 11 cancer and 3 synthetic datasets. The results on cancer datasets show that in sample clustering, GBHC on average produces a clustering partition that is more concordant with the ground truth than those obtained from other commonly used algorithms. Furthermore, GBHC frequently infers the number of clusters that is often close to the ground truth. In gene clustering, GBHC also produces a clustering partition that is more biologically plausible than several other state-of-the-art methods. This suggests GBHC as an alternative tool for studying gene expression data. The implementation of GBHC is available at https://sites.
google.com/site/gaussianbhc
Electric Quadrupole and Magnetic Octupole Moments of the Light Decuplet Baryons Within Light Cone QCD Sum Rules
The electric quadrupole and magnetic octupole moments of the light decuplet
baryons are calculated in the framework of the light cone QCD sum rules. The
obtained non-vanishing values for the electric quadrupole and magnetic octupole
moments of these baryons show nonspherical charge distribution. The sign of
electric quadrupole moment is positive for , ,
and negative for , which correspond to the prolate
and oblate charge distributions, respectively. A comparison of the obtained
results with the predictions of non-covariant quark model which shows a good
consistency between two approaches is also presented. Comparison of the
obtained results on the multipole moments of the decuplet baryons containing
strange quark with those of baryons shows a large SU(3) flavor
symmetry breaking.Comment: 11 Pages and 1 Tabl
Pion and sigma meson properties in a relativistic quark model
A variety of strong and electroweak interaction properties of the pion and
the light scalar sigma meson are computed in a relativistic quark model. Under
the assumption that the resulting coupling of these mesons to the constituent
quarks is identical, the sigma meson mass is determined as M_sigma=385.4 MeV.
We discuss in detail the gauging of the non-local meson-quark interaction and
calculate the electromagnetic form factor of the pion and the form factors of
the pi(0) -> gamma gamma and sigma -> gamma gamma processes. We obtain explicit
expressions for the relevant form factors and evaluate the leading and
next-to-leading orders for large Euclidean photon virtualities. Turning to the
decay properties of the sigma we determine the width of the electromagnetic
sigma -> gamma gamma transition and discuss the strong decay sigma -> pi pi. In
a final step we compute the nonleptonic decays D -> sigma pi and B -> sigma pi
relevant for the possible observation of the sigma meson. All our results are
compared to available experimental data and to results of other theoretical
studies.Comment: 46 page
First Measurement of pi e -> pi e gamma Pion Virtual Compton Scattering
Pion Virtual Compton Scattering (VCS) via the reaction pi e --> pi e gamma
was observed in the Fermilab E781 SELEX experiment. SELEX used a 600 GeV/c pi-
beam incident on target atomic electrons, detecting the incident pi- and the
final state pi-, electron and gamma. Theoretical predictions based on chiral
perturbation theory are incorporated into a Monte Carlo simulation of the
experiment and are compared to the data. The number of reconstructed events (9)
and their distribution with respect to the kinematic variables (for the
kinematic region studied) are in reasonable accord with the predictions. The
corresponding pi- VCS experimental cross section is sigma=38.8+-13 nb, in
agreement with the theoretical expectation sigma=34.7 nb.Comment: 10 pages, 12 figures, 4 tables, 25 references, SELEX home page is
http://fn781a.fnal.gov/, revised July 21, 2002 in response to journal referee
Comment
Observation of the Cabibbo-suppressed decay Xi_c+ -> p K- pi+
We report the first observation of the Cabibbo-suppressed charm baryon decay
Xi_c+ -> p K- pi+. We observe 150 +- 22 events for the signal. The data were
accumulated using the SELEX spectrometer during the 1996-1997 fixed target run
at Fermilab, chiefly from a 600 GeV/c Sigma- beam. The branching fractions of
the decay relative to the Cabibbo-favored Xi_c+ -> Sigma+ K- pi+ and Xi_c+ ->
X- pi+ pi+ are measured to be B(Xi_c+ -> p K- pi+)/B(Xi_c+ -> Sigma+ K- pi+) =
0.22 +- 0.06 +- 0.03 and B(Xi_c+ -> p K- pi+)/B(Xi_c+ -> X- pi+ pi+) = 0.20 +-
0.04 +- 0.02, respectively.Comment: 5 pages, RevTeX, 3 figures (postscript), Submitted to Phys. Rev. Let
First observation of a narrow charm-strange meson DsJ(2632) -> Ds eta and D0 K+
We report the first observation of a charm-strange meson DsJ(2632) at a mass
of 2632.6+/-1.6 MeV/c^2 in data from SELEX, the charm hadro-production
experiment E781 at Fermilab. This state is seen in two decay modes, Ds eta and
D0 K+. In the Ds eta decay mode we observe an excess of 49.3 events with a
significance of 7.2sigma at a mass of 2635.9+/-2.9 MeV/c^2. There is a
corresponding peak of 14 events with a significance of 5.3sigma at 2631.5+/-1.9
MeV/c^2 in the decay mode D0 K+. The decay width of this state is <17 MeV/c^2
at 90% confidence level. The relative branching ratio Gamma(D0K+)/Gamma(Dseta)
is 0.16+/-0.06. The mechanism which keeps this state narrow is unclear. Its
decay pattern is also unusual, being dominated by the Ds eta decay mode.Comment: 5 pages, 3 included eps figures. v2 as accepted for publication by
PR
First Observation of the Doubly Charmed Baryon Xi_cc^+
We observe a signal for the doubly charmed baryon Xi_cc^+ in the charged
decay mode Xi_cc^+ --> Lambda_c^+ K- pi+ in data from SELEX, the charm
hadro-production experiment at Fermilab. We observe an excess of 15.9 events
over an expected background of 6.1 +/- 0.5 events, a statistical significance
of 6.3sigma. The observed mass of this state is (3519 +/- 1) MeV/c^2. The
Gaussian mass width of this state is 3MeV/c^2, consistent with resolution; its
lifetime is less than 33fsec at 90% confidence.Comment: 5 pages, 3 figures, accepted for publication in Physical Review
Letter
Measurement of the quasi-elastic axial vector mass in neutrino-oxygen interactions
The weak nucleon axial-vector form factor for quasi-elastic interactions is
determined using neutrino interaction data from the K2K Scintillating Fiber
detector in the neutrino beam at KEK. More than 12,000 events are analyzed, of
which half are charged-current quasi-elastic interactions nu-mu n to mu- p
occurring primarily in oxygen nuclei. We use a relativistic Fermi gas model for
oxygen and assume the form factor is approximately a dipole with one parameter,
the axial vector mass M_A, and fit to the shape of the distribution of the
square of the momentum transfer from the nucleon to the nucleus. Our best fit
result for M_A = 1.20 \pm 0.12 GeV. Furthermore, this analysis includes updated
vector form factors from recent electron scattering experiments and a
discussion of the effects of the nucleon momentum on the shape of the fitted
distributions.Comment: 14 pages, 10 figures, 6 table
- …