179 research outputs found

    A Binary Shaped Mask Coronagraph for a Segmented Pupil

    Full text link
    We present the concept of a binary shaped mask coronagraph applicable to a telescope pupil including obscuration, based on previous works on binary shaped pupil mask by \citet{Kasdin2005} and \citet{Vanderbei1999}. Solutions with multi-barcode masks which "skip over" the obscuration are shown for various types of pupil of telescope, such as SUBARU, JWST, SPICA, and other examples. The number of diffraction tails in the point spread function of the coronagraphic image is reduced to two, thus offering a large discovery angle. The concept of mask rotation is also presented, which allows post-processing removal of diffraction tails and provides a 360∘^{\circ} continuous discovery angle. It is suggested that the presented concept offers solutions which potentially allow large telescopes with segmented pupil in future to be used as platforms for an coronagraph.Comment: 12 pages, 4 figure

    High contrast experiment of an AO-free coronagraph with a checkerboard pupil mask

    Full text link
    A high contrast coronagraph is expected to provide one of the promising ways to directly observe extra-solar planets. We present the newest results of our laboratory experiment investigating "rigid" coronagraph with a binary shaped checkerboard pupil mask, which should offer a highly stable solution for telescopes without adaptive optics (AO) for wavefront correction in space missions. The primary aim of this work was to study the stability of the coronagraph, and to demonstrate its performance without adaptive wavefront correction. Estimation of both the raw contrast and the gain of the point spread function (PSF) subtraction were needed. The limiting factor of the contrast was also important. A binary shaped pupil mask of a checkerboard type has been designed. The mask, consisting of an aluminum film on a glass substrate, was manufactured using nano-fabrication techniques with electron beam lithography. Careful evaluation of coronagraphic performance, including PSF subtraction, was carried out in air using the developed mask. A contrast of 6.7×10−86.7 \times 10^{-8} was achieved for the raw coronagraphic image by areal averaging of all of the observed dark regions. Following PSF subtraction, the contrast reached 6.8×10−96.8 \times 10^{-9}. Speckles were a major limiting factor throughout the dark regions of both the raw image and the PSF subtracted image. A rigid coronagraph with PSF subtraction without AO is a useful method to achieve high contrast observations. Applications of a rigid coronagraph to a Space Infrared telescope for Cosmology and Astrophysics (SPICA) and other platforms are discussed.Comment: 13 pages, 6 figure

    High-precision CTE measurement of hybrid C/SiC composite for cryogenic space telescopes

    Full text link
    This paper presents highly precise measurements of thermal expansion of a "hybrid" carbon-fiber reinforced silicon carbide composite, HB-Cesic\textregistered - a trademark of ECM, in the temperature region of \sim310-10K. Whilst C/SiC composites have been considered to be promising for the mirrors and other structures of space-borne cryogenic telescopes, the anisotropic thermal expansion has been a potential disadvantage of this material. HB-Cesic\textregistered is a newly developed composite using a mixture of different types of chopped, short carbon-fiber, in which one of the important aims of the development was to reduce the anisotropy. The measurements indicate that the anisotropy was much reduced down to 4% as a result of hybridization. The thermal expansion data obtained are presented as functions of temperature using eighth-order polynomials separately for the horizontal (XY-) and vertical (Z-) directions of the fabrication process. The average CTEs and their dispersion (1{\sigma}) in the range 293-10K derived from the data for the XY- and Z-directions were 0.805±\pm0.003\times10−6^{-6} K−1^{-1} and 0.837\pm0.001\times10−6^{-6} K−1^{-1}, respectively. The absolute accuracy and the reproducibility of the present measurements are suggested to be better than 0.01\times10−6^{-6} K−1^{-1} and 0.001\times(10)^{-6} K^{-1}, respectively. The residual anisotropy of the thermal expansion was consistent with our previous speculation regarding carbon-fiber, in which the residual anisotropy tended to lie mainly in the horizontal plane.Comment: Accepted by Cryogeincs. 12 pages, 3 figures, 1 tabll

    Laboratory Experiment of Checkerboard Pupil Mask Coronagraph

    Get PDF
    We present the results of the first laboratory experiment of checkerboard shaped pupil binary mask coronagraphs using visible light, in the context of the R&D activities for future mid-infrared space missions such as the 3.5 m SPICA telescope. The primary aim of this work is to demonstrate the coronagraphic performance of checkerboard masks down to a 10−610^{-6} peak-to-peak contrast, which is required to detect self-luminous extra-solar planets in the mid-infrared region. Two masks, consisting of aluminum films on a glass substrates, were manufactured using nano-fabrication techniques with electron beam lithography: one mask was optimized for a pupil with a 30% central obstruction and the other was for a pupil without obstruction. The theoretical contrast for both masks was 10−710^{-7} and no adaptive optics system was employed. For both masks, the observed point spread functions were quite consistent with the theoretical ones. The average contrast measured within the dark regions was 2.7×10−72.7 {\times} 10^{-7} and 1.1×10−71.1 {\times} 10^{-7}. The coronagraphic performance significantly outperformed the 10−610^{-6} requirement and almost reached the theoretical limit determined by the mask designs. We discuss the potential application of checkerboard masks for mid-infrared coronagraphy, and conclude that binary masks are promising for future high-contrast space telescopes.Comment: 6 pages, 6 figure

    A high dynamic-range instrument for SPICA for coronagraphic observation of exoplanets and monitoring of transiting exoplanets

    Full text link
    This paper, first, presents introductory reviews of the Space Infrared Telescope for Cosmology and Astrophysics (SPICA) mission and the SPICA Coronagraph Instrument (SCI). SPICA will realize a 3m class telescope cooled to 6K in orbit. The launch of SPICA is planned to take place in FY2018. The SPICA mission provides us with a unique opportunity to make high dynamic-range observations because of its large telescope aperture, high stability, and the capability for making infrared observations from deep space. The SCI is a high dynamic-range instrument proposed for SPICA. The primary objectives for the SCI are the direct coronagraphic detection and spectroscopy of Jovian exoplanets in the infrared region, while the monitoring of transiting planets is another important target owing to the non-coronagraphic mode of the SCI. Then, recent technical progress and ideas in conceptual studies are presented, which can potentially enhance the performance of the instrument: the designs of an integral 1-dimensional binary-shaped pupil mask coronagraph with general darkness constraints, a concentric ring mask considering the obscured pupil for surveying a wide field, and a spectral disperser for simultaneous wide wavelength coverage, and the first results of tests of the toughness of MEMS deformable mirrors for the rocket launch are introduced, together with a description of a passive wavefront correction mirror using no actuator.Comment: 15 pages, 10 figures, 2 table

    Potential of an Asymmetrical Agitation in Industrial Mixing

    Full text link
    Mixing is one of the most fundamental operations in chemical engineering. Stirred tanks are widely used in the manufacture of such materials as chemicals, paints, inks, electronics materials, ceramics, foods, pharmaceuticals and cosmetics. Suitable mixing is indispensable to the purpose achievement of a process. Eccentric mixing, in which an impeller installed at eccentric position in a vessel, is one of the traditional methods of promoting mixing. An asymmetrical flow which occurs in vessel is complicated, and it promotes mixing, distribution, and mass transfer. In this study, a new mixing method which eccentric mixing using a large type impeller which attracts attention in recent years is shown. The high performance of a large impeller can be combined with the advantages of an eccentric impeller by using the impeller at an eccentric position. The power consumption and mixing time for MAXBLEND, which is a type of large impeller, were investigated. The power consumption, P, and mixing time, θM, were measured under various eccentric conditions. The relation between the power number (Np) and Reynolds number (Re) and that between the dimensionless mixing time (nθM) and Re were investigated. When eccentric mixing is used industrially, we should be concerned about the horizontal load to a agitating shaft. The large oscillating horizontal load causes serious problems, such as the falling off of the impeller or the breakage of the motor, mechanical seal or gearbox. It is, therefore, important to understand the relation between these values and the impeller rotational speed when designing the mixing equipment and determining the operating conditions. In this study, the torque and horizontal load were measured in eccentric mixing under various eccentric conditions. The averages of both, the torque and the horizontal load, and their standard deviations, corresponding to the amplitude of fluctuation, were shown.Doi: 10.12777/ijse.5.2.73-80 [How to cite this article: Nishi, K., Enya, N., Sonoda, K., Misumi, R., Kaminoyama, M. (2013). Potential of an asymmetrical agitation in industrial mixing. International Journal of Science and Engineering, 5(2),73-80. Doi: 10.12777/ijse.5.2.73-80

    High Precision CTE-Measurement of SiC-100 for Cryogenic Space-Telescopes

    Full text link
    We present the results of high precision measurements of the thermal expansion of the sintered SiC, SiC-100, intended for use in cryogenic space-telescopes, in which minimization of thermal deformation of the mirror is critical and precise information of the thermal expansion is needed for the telescope design. The temperature range of the measurements extends from room temperature down to ∼\sim 10 K. Three samples, #1, #2, and #3 were manufactured from blocks of SiC produced in different lots. The thermal expansion of the samples was measured with a cryogenic dilatometer, consisting of a laser interferometer, a cryostat, and a mechanical cooler. The typical thermal expansion curve is presented using the 8th order polynomial of the temperature. For the three samples, the coefficients of thermal expansion (CTE), \bar{\alpha}_{#1}, \bar{\alpha}_{#2}, and \bar{\alpha}_{#3} were derived for temperatures between 293 K and 10 K. The average and the dispersion (1 σ\sigma rms) of these three CTEs are 0.816 and 0.002 (×10−6\times 10^{-6}/K), respectively. No significant difference was detected in the CTE of the three samples from the different lots. Neither inhomogeneity nor anisotropy of the CTE was observed. Based on the obtained CTE dispersion, we performed an finite-element-method (FEM) analysis of the thermal deformation of a 3.5 m diameter cryogenic mirror made of six SiC-100 segments. It was shown that the present CTE measurement has a sufficient accuracy well enough for the design of the 3.5 m cryogenic infrared telescope mission, the Space Infrared telescope for Cosmology and Astrophysics (SPICA).Comment: in press, PASP. 21 pages, 4 figure

    Design, analysis and test of a microdots apodizer for the Apodized Pupil Lyot Coronagraph

    Full text link
    Coronagraphic techniques are required to detect exoplanets with future Extremely Large Telescopes. One concept, the Apodized Pupil Lyot Coronagraph (APLC), is combining an apodizer in the entrance aperture and a Lyot opaque mask in the focal plane. This paper presents the manufacturing and tests of a microdots apodizer optimized for the near IR. The intent of this work is to demonstrate the feasibility and performance of binary apodizers for the APLC. This study is also relevant for any coronagraph using amplitude pupil apodization. A binary apodizer has been designed using a halftone dot process, where the binary array of pixels with either 0% or 100% transmission is calculated to fit the required continuous transmission, i.e. local transmission control is obtained by varying the relative density of the opaque and transparent pixels. An error diffusion algorithm was used to optimize the distribution of pixels that best approximates the required field transmission. The prototype was tested with a coronagraphic setup in the near IR. The transmission profile of the prototype agrees with the theoretical shape within 3% and is achromatic. The observed apodized and coronagraphic images are consistent with theory. However, binary apodizers introduce high frequency noise that is a function of the pixel size. Numerical simulations were used to specify pixel size in order to minimize this effect, and validated by experiment. This paper demonstrates that binary apodizers are well suited for being used in high contrast imaging coronagraphs. The correct choice of pixel size is important and must be adressed considering the scientific field of view.Comment: A&A accepted, 8 page

    The SPICA coronagraphic instrument (SCI) for the study of exoplanets

    Full text link
    We present the SPICA Coronagraphic Instrument (SCI), which has been designed for a concentrated study of extra-solar planets (exoplanets). SPICA mission provides us with a unique opportunity to make high contrast observations because of its large telescope aperture, the simple pupil shape, and the capability for making infrared observations from space. The primary objectives for the SCI are the direct coronagraphic detection and spectroscopy of Jovian exoplanets in infrared, while the monitoring of transiting planets is another important target. The specification and an overview of the design of the instrument are shown. In the SCI, coronagraphic and non-coronagraphic modes are applicable for both an imaging and a spectroscopy. The core wavelength range and the goal contrast of the coronagraphic mode are 3.5--27μ\mum, and 10−6^{-6}, respectively. Two complemental designs of binary shaped pupil mask coronagraph are presented. The SCI has capability of simultaneous observations of one target using two channels, a short channel with an InSb detector and a long wavelength channel with a Si:As detector. We also give a report on the current progress in the development of key technologies for the SCI.Comment: 22 pages, 10 figure

    Inner Size of a Dust Torus in the Seyfert 1 Galaxy NGC 4151

    Full text link
    The most intense monitoring observations yet made were carried out on the Seyfert 1 galaxy NGC 4151 in the optical and near-infrared wave-bands. A lag from the optical light curve to the near-infrared light curve was measured. The lag-time between the V and K light curves at the flux minimum in 2001 was precisely 48+2-3 days, as determined by a cross-correlation analysis. The correlation between the optical luminosity of an active galactic nucleus (AGN) and the lag-time between the UV/optical and the near-infrared light curves is presented for NGC 4151 in combination with previous lag-time measurements of NGC 4151 and other AGNs in the literature. This correlation is interpreted as thermal dust reverberation in an AGN, where the near-infrared emission from an AGN is expected to be the thermal re-radiation from hot dust surrounding the central engine at a radius where the temperature equals to that of the dust sublimation temperature. We find that the inner radius of the dust torus in NGC 4151 is ∼\sim 0.04 pc corresponding to the measured lag-time, well outside the broad line region (BLR) determined by other reverberation studies of the emission lines.Comment: Accepted for publication in ApJ Letters, 13 pages, 3 figures; Corrected typo
    • …
    corecore