1,026 research outputs found
Legal Research: Techniques and Ideas
This paper was prepared for the conference of New Zealand University Law Teachers held at Massey University in November 1977. Though the authors here make no special claims originality or great insight, the many ideas developed, particularly when taken together with Professor Campbell's trenchant piece on legal writing and John Thomas' more recent article on legal education (both reprinted in this volume), which stresses the relationship between teaching and research, will be of value to the increasing numbers of lawyers engaged in research
Generalized (m,k)-Zipf law for fractional Brownian motion-like time series with or without effect of an additional linear trend
We have translated fractional Brownian motion (FBM) signals into a text based
on two ''letters'', as if the signal fluctuations correspond to a constant
stepsize random walk. We have applied the Zipf method to extract the
exponent relating the word frequency and its rank on a log-log plot. We have
studied the variation of the Zipf exponent(s) giving the relationship between
the frequency of occurrence of words of length made of such two letters:
is varying as a power law in terms of . We have also searched how
the exponent of the Zipf law is influenced by a linear trend and the
resulting effect of its slope. We can distinguish finite size effects, and
results depending whether the starting FBM is persistent or not, i.e. depending
on the FBM Hurst exponent . It seems then numerically proven that the Zipf
exponent of a persistent signal is more influenced by the trend than that of an
antipersistent signal. It appears that the conjectured law
only holds near . We have also introduced considerations based on the
notion of a {\it time dependent Zipf law} along the signal.Comment: 24 pages, 12 figures; to appear in Int. J. Modern Phys
Radio frequency electronics on plastic
In this paper the recent progress of active high frequency electronics on plastic is discussed. This technology is mechanically flexible, bendable, stretchable and does not need any rigid chips. Indium Gallium Zinc Oxide (IGZO) technology is applied. At 2 V supply and gate length of 0.5 μm, the thin-film transistors (TFTs) yield a measured transit frequency of 138 MHz. Our scalable TFT compact simulation model shows good agreement with measurements. To achieve a sufficiently high yield, TFTs with gate lengths of around 5 μm are used for the circuit design. A Cherry Hopper amplifier with 3.5 MHz bandwidth, 10 dB gain and 5 mW dc power is presented. The fully integrated receiver covering a plastic foil area of 3 × 9 mm2 includes a four stage cascode amplifier, an amplitude detector, a baseband amplifier and a filter. At a dc current of 7.2 mA and a supply of 5 V, a bandwidth of 2 - 20 MHz and a gain beyond 15 dB were measured. Finally, an outlook regarding future advancements of high frequency electronics on plastic is given
Formality and informality in the summative assessment of motor vehicle apprentices: a case study
This article explores the interaction of formal and informal attributes of competence‐based assessment. Specifically, it presents evidence from a small qualitative case study of summative assessment practices for competence‐based qualifications within apprenticeships in the motor industry in England. The data are analysed through applying an adaptation of a framework for exploring the interplay of formality and informality in learning. This analysis reveals informal mentoring as a significant element which influences not only the process of assessment, but also its outcomes. We offer different possible interpretations of the data and their analysis, and conclude that, whichever interpretation is adopted, there appears to be a need for greater capacity‐building for assessors at a local level. This could acknowledge a more holistic role for assessors; recognise the importance of assessors’ informal practices in the formal retention and achievement of apprentices; and enhance awareness of inequalities that may be reinforced by both informal and formal attributes of assessment practices
Reverse dark current in organic photodetectors and the major role of traps as source of noise
Organic photodetectors have promising applications in low-cost imaging, health monitoring and near-infrared sensing. Recent research on organic photodetectors based on donor–acceptor systems has resulted in narrow-band, flexible and biocompatible devices, of which the best reach external photovoltaic quantum efficiencies approaching 100%. However, the high noise spectral density of these devices limits their specific detectivity to around 1013 Jones in the visible and several orders of magnitude lower in the near-infrared, severely reducing performance. Here, we show that the shot noise, proportional to the dark current, dominates the noise spectral density, demanding a comprehensive understanding of the dark current. We demonstrate that, in addition to the intrinsic saturation current generated via charge-transfer states, dark current contains a major contribution from trap-assisted generated charges and decreases systematically with decreasing concentration of traps. By modeling the dark current of several donor–acceptor systems, we reveal the interplay between traps and charge-transfer states as source of dark current and show that traps dominate the generation processes, thus being the main limiting factor of organic photodetectors detectivity
A Full-Potential-Linearized-Augmented-Plane-Wave Electronic Structure Study of delta-Plutonium and the (001) Surface
The electronic and geometric properties of bulk fcc delta-plutonium and the
quantum size effects in the surface energies and the work functions of the
(001) ultra thin films (UTF) up to 7 layers have been investigated with
periodic density functional theory calculations within the full-potential
linearized augmented-plane wave (FP-LAPW) approach as implemented in the WIEN2k
package. Our calculated equilibrium atomic volume of 178.3 a.u.^3 and bulk
modulus of 24.9 GPa at the fully relativistic level of theory, i.e.
spin-polarization and spin-orbit coupling included, are in good agreement with
the experimental values of 168.2 a.u.^3 and 25 GPa (593 K), respectively. The
calculated equilibrium lattice constants at different levels of approximation
are used in the surface properties calculations for the thin films. The surface
energy is found to be rapidly converged with the semi-infinite surface energy
predicted to be 0.692eV at the fully-relativistic level.Comment: 27 pages,8 figure
Recommended from our members
Flexible In-Ga-Zn-O based circuits with two and three metal layers: simulation and fabrication study
The quest for high-performance flexible circuits call for scaling of the minimum feature size in Thin-Film Transistors (TFTs). Although reduced channel lengths can guarantee an improvement in the electrical properties of the devices, proper design rules also play a crucial role to minimize parasitics when designing fast circuits. In this letter, systematic Computer-Aided Design (CAD) simulations have guided the fabrication of highperformance flexible operational amplifiers (opamps) and logic circuits based on Indium-Gallium-Zinc-Oxide (IGZO) TFTs. In particular, the performance improvements due to the use of an additional third metal layer for the interconnections has been estimated for the first time. Encouraged by the simulated enhancements resulting by the decreased parasitic resistances and capacitances, both TFTs and circuits have been realized on a free-standing 50μm thick polymide foil using three metal layers. Despite the thicker layer stack, the TFTs have shown mechanical stability down to 5mm bending radii. Moreover, the opamps and the logic circuits have yielded improved electrical performance with respect to the architecture with two metal layers: gainbandwidth- product (GBWP) increased by 16:9%, for the first one, and propagation delay (tpd) decreased by 43%, for the latter one
- …