1,146 research outputs found

    Classical and Non-Relativistic Limits of a Lorentz-Invariant Bohmian Model for a System of Spinless Particles

    Full text link
    A completely Lorentz-invariant Bohmian model has been proposed recently for the case of a system of non-interacting spinless particles, obeying Klein-Gordon equations. It is based on a multi-temporal formalism and on the idea of treating the squared norm of the wave function as a space-time probability density. The particle's configurations evolve in space-time in terms of a parameter {\sigma}, with dimensions of time. In this work this model is further analyzed and extended to the case of an interaction with an external electromagnetic field. The physical meaning of {\sigma} is explored. Two special situations are studied in depth: (1) the classical limit, where the Einsteinian Mechanics of Special Relativity is recovered and the parameter {\sigma} is shown to tend to the particle's proper time; and (2) the non-relativistic limit, where it is obtained a model very similar to the usual non-relativistic Bohmian Mechanics but with the time of the frame of reference replaced by {\sigma} as the dynamical temporal parameter

    Studying and Evaluating Informative Materials

    Get PDF

    Dilemmas and Disagreements in Reading

    Get PDF

    Determination of SU(2) ChPT LECs from 2+1 flavor staggered lattice simulations

    Get PDF
    By fitting pion masses and decay constants from 2+1 flavor staggered lattice simulations to the predictions of NLO and NNLO SU(2) chiral perturbation theory we determine the low-energy constants l_3 and l_4. The lattice ensembles were generated by the Wuppertal-Budapest collaboration and cover pion masses in the range of 135 to 435 MeV and lattice scales between 0.7 and 2.0 GeV. By choosing a suitable scaling trajectory, we were able to demonstrate that precise and stable results for the LECs can be obtained from continuum ChPT to NLO. The pion masses available in this work also allow us to study the applicability of using ChPT to extrapolate from higher masses to the physical pion mass.Comment: 8 pages, 8 figures, 1 table, talk presented at Xth Quark Confinement and the Hadron Spectrum, Munich, October 201

    QCD thermodynamics with dynamical overlap fermions

    Get PDF
    We study QCD thermodynamics using two flavors of dynamical overlap fermions with quark masses corresponding to a pion mass of 350 MeV. We determine several observables on N_t=6 and 8 lattices. All our runs are performed with fixed global topology. Our results are compared with staggered ones and a nice agreement is found.Comment: 14 pages, 6 figures, 1 tabl

    SU(2) chiral perturbation theory low-energy constants from 2+1 flavor staggered lattice simulations

    Get PDF
    We extract the next-to-leading-order low-energy constants \bar\ell_3 and \bar\ell_4 of SU(2) chiral perturbation theory, based on precise lattice data for the pion mass and decay constant on ensembles generated by the Wuppertal-Budapest Collaboration for QCD thermodynamics. These ensembles feature 2+1 flavors of two-fold stout-smeared dynamical staggered fermions combined with Symanzik glue, with pion masses varying from 135 to 435 MeV, lattice scales between 0.7 and 2.0 GeV, while m_s is kept fixed at its physical value. Moderate taste splittings and the scale being set through the pion decay constant allow us to restrict ourselves to the taste pseudoscalar state and to use formulas from continuum chiral perturbation theory. Finally, by dropping the data points near 135 MeV from the fits, we can explore the range of pion masses that is needed in SU(2) chiral perturbation theory to reliably extrapolate to the physical point.Comment: 40 pages, 22 figures, 3 tables; v2: expanded discussion, matches published versio

    Diquark effects in light baryon correlators from lattice QCD

    Full text link
    We study the role of diquarks in light baryons through point to point baryon correlators. We contrast results from quenched simulations with ones with two flavors of dynamical overlap fermions. The scalar, pseudoscalar and axial vector diquarks are combined with light quarks to form color singlets. The quenched simulation shows large zero mode effects in correlators containing the scalar and pseudoscalar diquark. The two scalar diquarks created by gamma_5 and gamma_0gamma_5 lead to different behavior in baryon correlators, showing that the interaction of diquarks with the third light quark matters: we do not see an isolated diquark. In our quark mass range, the scalar diquark created by gamma_5 seems to play a greater role than the others.Comment: 12 pages, 11 figure

    The ratio FK/Fpi in QCD

    Get PDF
    We determine the ratio FK/Fpi in QCD with Nf=2+1 flavors of sea quarks, based on a series of lattice calculations with three different lattice spacings, large volumes and a simulated pion mass reaching down to about 190 MeV. We obtain FK/Fpi=1.192 +/- 0.007(stat) +/- 0.006(syst). This result is then used to give an updated value of the CKM matrix element |Vus|. The unitarity relation for the first row of this matrix is found to be well observed.Comment: 15 pages, 4 figures, 2 table

    Chiral behavior of pseudo-Goldstone boson masses and decay constants in 2+1 flavor QCD

    Get PDF
    We present preliminary results for the chiral behavior of charged pseudo-Goldstone-boson masses and decay constants. These are obtained in simulations with N_f=2+1 flavors of tree-level, O(a)-improved Wilson sea quarks. In these simulations, mesons are composed of either valence quarks discretized in the same way as the sea quarks (unitary simulations) or of overlap valence quarks (mixed-action simulations). We find that the chiral behavior of the pseudoscalar meson masses in the mixed-action calculations cannot be explained with continuum, partially-quenched chiral perturbation theory. We show that the inclusion of O(a^2) unitarity violations in the chiral expansion resolves this discrepancy and that the size of the unitarity violations required are consistent with those which we observe in the zero-momentum, scalar-isotriplet-meson propagator.Comment: 7 pages, 3 figures, talk by L. Lellouch at the XXV International Symposium on Lattice Field Theory (LATTICE 2007), 30 July - 4 August 2007, Regensburg, German
    corecore