187 research outputs found
Molecular Characterisation of Long-Acting Insulin Analogues in Comparison with Human Insulin, IGF-1 and Insulin X10
AIMS/HYPOTHESIS: There is controversy with respect to molecular characteristics of insulin analogues. We report a series of experiments forming a comprehensive characterisation of the long acting insulin analogues, glargine and detemir, in comparison with human insulin, IGF-1, and the super-mitogenic insulin, X10. METHODS: We measured binding of ligands to membrane-bound and solubilised receptors, receptor activation and mitogenicity in a number of cell types. RESULTS: Detemir and glargine each displayed a balanced affinity for insulin receptor (IR) isoforms A and B. This was also true for X10, whereas IGF-1 had a higher affinity for IR-A than IR-B. X10 and glargine both exhibited a higher relative IGF-1R than IR binding affinity, whereas detemir displayed an IGF-1R:IR binding ratio of ≤ 1. Ligands with high relative IGF-1R affinity also had high affinity for IR/IGF-1R hybrid receptors. In general, the relative binding affinities of the analogues were reflected in their ability to phosphorylate the IR and IGF-1R. Detailed analysis revealed that X10, in contrast to the other ligands, seemed to evoke a preferential phosphorylation of juxtamembrane and kinase domain phosphorylation sites of the IR. Sustained phosphorylation was only observed from the IR after stimulation with X10, and after stimulation with IGF-1 from the IGF-1R. Both X10 and glargine showed an increased mitogenic potency compared to human insulin in cells expressing many IGF-1Rs, whereas only X10 showed increased mitogenicity in cells expressing many IRs. CONCLUSIONS: Detailed analysis of receptor binding, activation and in vitro mitogenicity indicated no molecular safety concern with detemir
Long-term correction of diabetes in rats after lentiviral hepatic insulin gene therapy
Aims/hypothesis: Type 1 diabetes results from the autoimmune destruction of pancreatic beta cells. Exogenous insulin therapy cannot achieve precise physiological control of blood glucose concentrations, and debilitating complications develop. Lentiviral vectors are promising tools for liver-directed gene therapy. However, to date, transduction rates in vivo remain low in hepatocytes, without the induction of cell cycling. We investigated long-term transgene expression in quiescent hepatocytes in vitro and determined whether the lentiviral delivery of furin-cleavable insulin to the liver could reverse diabetes in rats. Materials and methods: To improve transduction efficiency in vitro, we optimised hepatocyte isolation and maintenance protocols and, using an improved surgical delivery method, delivered furin-cleavable insulin alone or empty vector to the livers of streptozotocin-induced diabetic rats by means of a lentiviral vector. Rats were monitored for changes in body weight and blood glucose, and intravenous glucose tolerance tests were performed. Expression of insulin was determined by RT-PCR, immunohistochemistry and electron microscopy. Results: We achieved long-term transgene expression in quiescent hepatocytes in vitro (87 ± 1.2% transduction efficiency), with up to 60 ± 3.2% transduction in vivo. We normalised blood glucose for 500 days-a significantly longer period than previously reported-making this the first successful study using a lentiviral vector. This procedure resulted in the expression of genes encoding several beta cell transcription factors, some pancreatic endocrine transdifferentiation, hepatic insulin storage in granules, and restoration of glucose tolerance. Liver function tests remained normal. Importantly, pancreatic exocrine transdifferentiation did not occur. Conclusions/interpretation: Our data suggest that this regimen may ultimately be employed for the treatment of type 1 diabetes
Initiation of V(D)J Recombination by Dβ-Associated Recombination Signal Sequences: A Critical Control Point in TCRβ Gene Assembly
T cell receptor (TCR) β gene assembly by V(D)J recombination proceeds via successive Dβ-to-Jβ and Vβ-to-DJβ rearrangements. This two-step process is enforced by a constraint, termed beyond (B)12/23, which prohibits direct Vβ-to-Jβ rearrangements. However the B12/23 restriction does not explain the order of TCRβ assembly for which the regulation remains an unresolved issue. The initiation of V(D)J recombination consists of the introduction of single-strand DNA nicks at recombination signal sequences (RSSs) containing a 12 base-pairs spacer. An RSS containing a 23 base-pairs spacer is then captured to form a 12/23 RSSs synapse leading to coupled DNA cleavage. Herein, we probed RSS nicks at the TCRβ locus and found that nicks were only detectable at Dβ-associated RSSs. This pattern implies that Dβ 12RSS and, unexpectedly, Dβ 23RSS initiate V(D)J recombination and capture their respective Vβ or Jβ RSS partner. Using both in vitro and in vivo assays, we further demonstrate that the Dβ1 23RSS impedes cleavage at the adjacent Dβ1 12RSS and consequently Vβ-to-Dβ1 rearrangement first requires the Dβ1 23RSS excision. Altogether, our results provide the molecular explanation to the B12/23 constraint and also uncover a ‘Dβ1 23RSS-mediated’ restriction operating beyond chromatin accessibility, which directs Dβ1 ordered rearrangements
External vs Internal Determinants of Firm Technology Strategy: Evidence from the Polish Services Sector
The authors use the insights from strategy research and innovation studies to address two principal questions regarding the technology strategy of a firm: what are the distinct elements of technology strategy and what are the strategy determinants? Equipped with Zahra's (1996) concept of measuring technology strategy, we analyze data from two runs of the Community Innovation Survey for Polish service firms. They propose a set of indicators reflecting four principal fields of technology strategy: pioneer-posture, R&D efforts, technology portfolio, and monitoring activities. Interactions between the strategic variables are analyzed and their determinants are assessed. The results suggest that technology strategies are determined by both factors external to the firm, and by the hitherto less stressed in the CIS-based empirical literature, internal factors. The role of internal factors increases with the macroeconomic environment becoming less favourable
Absorptive capacity and innovation: When is it better to cooperate?
Cooperation can benefit and hurt firms at the same time. An important question then is: when is it better to cooperate? And, once the decision to cooperate is made, how can an appropriate partner be selected? In this paper we present a model of inter-firm cooperation driven by cognitive distance, appropriability conditions and external knowledge. Absorptive capacity of firms develops as an outcome of the interaction between absorptive R&D and cognitive distance from voluntary and involuntary knowledge spillovers. Thus, we offer a revision of the original model by Cohen and Levinthal (Econ J 99(397):569-596, 1989), accounting for recent empirical findings and explicitly modeling absorptive capacity within the framework of interactive learning. We apply that to the analysis of firms' cooperation and R&D investment preferences. The results show that cognitive distance and appropriability conditions between a firm and its cooperation partner have an ambiguous effect on the profit generated by the firm. Thus, a firm chooses to cooperate and selects a partner conditional on the investments in absorptive capacity it is willing to make to solve the understandability/novelty trade-off. © 2014 Springer-Verlag Berlin Heidelberg
- …