63 research outputs found

    Biomass-supported catalysts on Desulfovibrio desulfuricans and Rhodobacter sphaeroides

    Get PDF
    A Rhodobacter sphaeroides-supported dried, ground palladium catalyst (‘‘Rs-Pd(0)’’) was compared with a Desulfovibrio desulfuricans-supported catalyst (‘‘Dd-Pd(0)’’)and with unsupported palladium metal particles made by reduction under H2 (‘‘Chem-Pd(0)’’). Cell surface-located clusters of Pd(0) nanoparticles were detected on both D. desulfuricans and R. sphaeroides but the size and location of deposits differed among comparably loaded preparations.\ud \ud These differences may underlie the observation of different activities of Dd-Pd(0) and Rs-Pd(0) when compared with respect to their ability to promote hydrogen release from hypophosphite and to catalyze chloride release from chlorinated aromatic compounds. Dd-Pd(0) was more effective in the reductive dehalogenation of polychlorinated biphenyls (PCBs), whereas Rs-Pd(0) was more effective in the initial dehalogenation of pentachlorophenol (PCP) although the rate of chloride release from PCP was comparable with both preparations after 2 h

    A Novel Aerobic Mechanism for Reductive Palladium Biomineralization and Recovery by Escherichia coli

    Get PDF
    Aerobically grown E. coli cells reduced Pd(II) via a novel mechanism using formate as the electron donor. This reduction was monitored in real-time using extended X-ray absorption fine structure. Transmission electron microscopy analysis showed that Pd(0) nanoparticles, confirmed by X-ray diffraction, were precipitated outside the cells. The rate of Pd(II) reduction by E. coli mutants deficient in a range of oxidoreductases was measured, suggesting a molybdoprotein-mediated mechanism, distinct from the hydrogenase-mediated Pd(II) reduction previously described for anaerobically grown E. coli cultures. The potential implications for Pd(II) recovery and bioPd catalyst fabrication are discussed

    Use of Desulfovibrio and Escherichia coli Pd-nanocatalysts in reduction of Cr(VI) and hydrogenolytic dehalogenation of polychlorinated biphenyls and used transformer oil

    Get PDF
    BACKGROUND Desulfovibrio spp. biofabricate metallic nanoparticles (e.g. ‘Bio-Pd’) which catalyse the reduction of Cr(VI) to Cr(III) and dehalogenate polychlorinated biphenyls (PCBs). Desulfovibrio spp. are anaerobic and produce H2S, a potent catalyst poison, whereas Escherichia coli can be pre-grown aerobically to high density, has well defined molecular tools, and also makes catalytically-active ‘Bio-Pd’. The first aim was to compare ‘Bio-Pd’ catalysts made by Desulfovibrio spp. and E. coli using suspended and immobilised catalysts. The second aim was to evaluate the potential for Bio-Pd-mediated dehalogenation of PCBs in used transformer oils, which preclude recovery and re-use.\ud RESULTS Catalysis via Bio-PdD. desulfuricans and Bio-PdE. coli was compared at a mass loading of Pd:biomass of 1:3 via reduction of Cr(VI) in aqueous solution (immobilised catalyst) and hydrogenolytic release of Cl- from PCBs and used transformer oil (catalyst suspensions). In both cases Bio-PdD. desulfuricans outperformed Bio-Pd E. coli by ~3.5-fold, attributable to a ~3.5-fold difference in their Pd-nanoparticle surface areas determined by magnetic measurements (Bio-PdD. desulfuricans) and by chemisorption analysis (Bio-PdE. coli). Small Pd particles were confirmed on D. desulfuricans and fewer, larger ones on E. coli via electron microscopy. Bio-PdD. desulfuricans-mediated chloride release from used transformer oil (5.6 ±\pm 0.8 ÎŒ\mug mL-1 ) was comparable to that observed using several PCB reference materials. \ud CONCLUSIONS At a loading of 1:3 Pd: biomass Bio-PdD. desulfuricans is 3.5-fold more active than Bio-PdE. coli, attributable to the relative catalyst surface areas reflected in the smaller nanoparticle sizes of the former. This study also shows the potential of Bio-PdD. desulfuricans to remediate used transformer oil

    Biomanufacture of nano-Pd(0) by Escherichia coli and electrochemical activity of bio-Pd(0) made at the expense of H2 and formate as electron donors

    Get PDF
    Objective: Palladised cells of Desulfovibrio desulfuricans and Shewanella oneidensis have been reported as fuel cell electrocatalysts but growth at scale may be unattractive/costly; we have evaluated the potential of using E. coli, using H2/formate for Pd-nanoparticle manufacture. Results: Using ‘bio-Pd’ made under H2 (20 wt%) cyclic voltammograms suggested electrochemical activity of bio-NPs in a native state, attributed to proton adsorption/desorption. Bio-Pd prepared using formate as the electron donor gave smaller, well separated NPs; this material showed no electrochemical properties, and hence little potential for fuel cell use using a simple preparation technique. Bio-Pd on S. oneidensis gave similar results to those obtained using E. coli. Conclusion: Bio-Pd is sufficiently conductive to make an E. coli-derived electrochemically active material on intact, unprocessed bacterial cells if prepared at the expense of H2, showing potential for fuel cell applications using a simple one-step preparation method

    Nanoparticles of palladium supported on bacterial biomass : new re-usable heterogeneous catalyst with comparable activity to homogeneous colloidal Pd in the Heck reaction

    Get PDF
    AbstractThe Heck coupling of iodobenzene with ethyl acrylate or styrene was used to assess the catalytic properties of biogenic nanoparticles of palladium supported upon the surface of bacterial biomass (bioPd), this approach combining advantages of both homogeneous and heterogeneous catalysts. The biomaterial was comparably active or superior to colloidal Pd in the Heck reaction, giving a final conversion of 85% halide and initial rate of 0.17mmol/min for the coupling of styrene and iodobenzene compared to a final conversion of 70% and initial rate of 0.15mmol/min for a colloidal Pd catalyst under the same reaction conditions at 0.5mol.% catalyst loading. It was easily separated from the products under gravity or by filtration for reuse with low loss or agglomeration. When compared to two alternative palladium catalysts, commercial 5% Pd/C and tetraalkylammonium-stabilised palladium clusters, the bioPd was successfully reused in six sequential alkylations with only slight decreases in the rate of reaction as compared to virgin catalyst (initial rate normalised for g Pd decreased by 5% by the 6th run with bioPd catalyst cf. a decrease of 95% for Pd/C). A re-usable Pd-catalyst made cheaply from bacteria left over from other processes would impact on both conservation of primary sources via reduced metal losses in industrial application and the large environmental demand of primary processing from ores

    Catalytic activity of biomass-supported Pd nanoparticles : influence of the biological component in catalytic efficacy and potential application in ‘green’ synthesis of fine chemicals and pharmaceuticals

    Get PDF
    AbstractFive gram negative and two gram positive bacterial strains known for their heavy metal tolerance or ability to reduce metal ions were coated with Pd(0) nanoparticles (NPs) via reduction of soluble Pd(II) ions under H2 following an initial uptake of PdCl42- without added electron donor ('biosorption'), where the gram negative strains had a ~5-fold greater capacity for Pd(II). Cupriavidis metallidurans accumulated Pd(II) exceptionally; the possibility of reduction to Pd(0) via an endogenous electron donor was not discounted. The initial rate of subsequent H2-mediated Pd(II) reduction correlated with the Pd(II) removed during biosorption (r2=0.9). TEM showed strain-specific variations of Pd-NPs. At a 1:3 loading of Pd:biomass the cell surfaces of Escherichia coli and Desulfovibrio desulfuricans showed uniform coverage with small NPs with the other strains showing larger aggregates. NPs made by the gram positive cells appeared larger than their gram negative counterparts. At a loading of 1:19 all were active catalysts in Cr(VI) reduction and in two Heck coupling reactions. BioPdE. coli and bioPdD. desulfuricans and bioPdA. oxydans were consistently the best and worst catalysts respectively. BioPdE. coli was further tested as a process catalyst according to industrial protocols in Heck and Suzuki coupling reactions. Laboratory and industrial tests (coupling of phenyl iodide and ethyl acrylate) gave 75% and 78% conversion to ethyl cinnamate, respectively. The biomaterial catalysed Heck and Suzuki reactions using bromoacetophenone and 4-bromoanisole (Heck) and 4-chloroanisole (Suzuki) but not 3-chlorotoluene. In accordance with known chemical catalysis the catalytic efficacy was related to electron-withdrawing substituents on the phenyl ring, with more than 90% conversion (Suzuki) using 4-bromobenzotrifluoride

    Novel catalytically active pd/Ru bimetallic nanoparticles synthesized by Bacillus benzeovorans

    Get PDF
    This work was supported by a UK Commonwealth scholarship to JBO. BK was supported by the Petroleum Technology Development Funds (PTDF) of Nigeria. The project was funded by NERC grant NE/L014076/1 to LEM. The Science City Photoemission Facility used in this research was funded through the Science Cities Advanced Materials Project 1: Creating and Characterizing Next Generation of Advanced Materials with support from AWM and ERDF funds. The microscopy work was conducted in the “Laboratorio de Microscopias Avanzadas” at “Instituto de Nanociencia de Aragon - Universidad de Zaragoza” Spain. The authors acknowledge the LMA-INA for offering access to their instruments and expertise.Bacillus benzeovorans assisted and supported growth of ruthenium (bio-Ru) and palladium/ruthenium (bio-Pd@Ru) core@shell nanoparticles (NPs) as bio-derived catalysts. Characterization of the bio-NPs using various electron microscopy techniques and high-angle annular dark field (HAADF) analysis confirmed two NP populations (1–2 nm and 5–8 nm), with core@shells in the latter. The Pd/Ru NP lattice fringes, 0.231 nm, corresponded to the (110) plane of RuO2. While surface characterization using X-ray photoelectron spectroscopy (XPS) showed the presence of Pd(0), Pd(II), Ru(III) and Ru(VI), X-ray absorption (XAS) studies of the bulk material confirmed the Pd speciation (Pd(0) and Pd(II)- corresponding to PdO), and identified Ru as Ru(III) and Ru(IV). The absence of Ru–Ru or Ru–Pd peaks indicated Ru only exists in oxide forms (RuO2 and RuOH), which are surface-localized. X ray diffraction (XRD) patterns did not identify Pd-Ru alloying. Preliminary catalytic studies explored the conversion of 5-hydroxymethyl furfural (5-HMF) to the fuel precursor 2,5-dimethyl furan (2,5-DMF). Both high-loading (9.7 wt.% Pd, 6 wt.% Ru) and low-loading (2.4 wt.% Pd, 2 wt.% Ru) bio-derived catalysts demonstrated high conversion efficiencies (~95%) and selectivity of ~63% (~20% better than bio-Ru NPs) and 58%, respectively. These materials show promising future scope as efficient low-cost biofuel catalysts.Funded by NERC grant NE/L014076/
    • 

    corecore