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 18 

Aerobically-grown E. coli cells reduced Pd(II) via a novel mechanism using formate 19 

as the electron donor. This reduction was monitored in real-time using extended X-ray 20 

absorption fine structure. Transmission electron microscopy analysis showed that 21 

Pd(0) nanoparticles, confirmed by X-ray diffraction, were precipitated outside the 22 

cells. The rate of Pd(II) reduction by E. coli mutants deficient in a range of 23 

oxidoreductases was measured, suggesting a molybdoprotein-mediated mechanism, 24 

distinct from the hydrogenase-mediated Pd(II) reduction previously described for 25 
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anaerobically-grown E. coli cultures. The potential implications for Pd(II) recovery 26 

and bioPd catalyst fabrication are discussed. 27 

 28 

Keywords: palladium nanoparticles, Escherichia coli, biomineralization. 29 

 30 

Introduction 31 

The microbial reduction of metals and radionuclides has attracted much interest, as it 32 

can be potentially harnessed for bioremediation, metal recovery, the fabrication of 33 

novel nanobiominerals and even energy generation in biobatteries (Lloyd 2003; Lloyd 34 

et al. 2008; Lovley 2006;). For example, the sulfate-reducing bacterium (SRB) 35 

Desulfovibrio desulfuricans has been shown to use a periplasmic hydrogenase 36 

supplied with hydrogen to reduce soluble Pd(II), resulting in the precipitation of Pd(0) 37 

nanoparticles in the periplasm of the cell (‘bioPd’). However SRB produce H2S, a 38 

potent catalyst poison that must be removed before making the bioPd. Other 39 

organisms capable of this metal bioreduction include the Gram-negative bacteria 40 

Shewanella oneidensis (De Windt et al. 2005), Escherichia coli (Deplanche et al. 41 

2010, 2014; Mabbett et al. 2006), Pseudomonas putida, Cupriavidus necator (Søbjerg 42 

et al. 2009), Cupriavidus metallidurans (Gauthier et al. 2010), Paracoccus 43 

denitrificans (Bunge et al. 2010), Rhodobacter sphaeroides (Redwood et al. 2008), 44 

Rhodobacter capsulatus (Wood et al. 2010), and the Gram-positive bacteria Bacillus 45 

sphaericus (Creamer et al. 2007), Arthrobacter oxyidans (Deplanche et al. 2014; 46 

Wood et al. 2010), Micrococcus luteus (Deplanche et al. 2014), Staphylococcus sciuri 47 

(Søbjerg et al. 2009) and Clostridium pasteurianum (Chidambaram et al. 2010). This 48 

property has allowed the use of ‘palladised’ whole cells or processed biomineral 49 

directly in industrially important reactions, often showing superior activity compared 50 
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with a commercially available carbon-supported palladium catalyst. A number of 51 

studies have investigated the catalytic activity of bioPd, demonstrating its use in 52 

remediative reactions such as the reduction of Cr(VI) to Cr(III) (Beauregard et al. 53 

2010; Mabbett et al. 2006), the dehalogenation of chlorophenol, polychlorinated 54 

biphenyls, polybrominated diphenyl ethers (Baxter-Plant et al. 2003; De Windt et al. 55 

2005; Harrad et al. 2007), trichloroethylene (Hennebel et al. 2009a, 2009b), and the 56 

pesticide γ- hexachlorocyclohexane (Mertens et al. 2007), in ‘greener’ chemical 57 

synthesis such as the hydrogenation of itaconic acid (Creamer et al. 2007) and 2-58 

pentyne (Bennett et al. 2010), in Heck and Suzuki reactions (Bennett et al. 2013; 59 

Deplanche et al. 2014), and also in the application of bioPd as a fuel cell 60 

electrocatalyst to produce electricity from hydrogen (Orozco et al. 2010; Yong et al. 61 

2007). In each case where the bioPd was compared with an abiotically-produced 62 

palladium catalyst (finely-divided or supported on a carbon matrix), the bioPd was 63 

more active than or at least as active as the commercially available alternative. 64 

 65 

Production of catalytically active bioPd also was reported by an aerobically-grown 66 

Serratia sp. (Beauregard et al. 2010; Deplanche et al. 2014) under which condition 67 

hydrogenases are not expressed. Also, cells of E. coli deficient in the three major 68 

hydrogenases reduced Pd(II) (albeit slowly: Deplanche et al. 2010), and showed 69 

larger Pd-nanoparticles located on the outer surface of the cells. This suggested an 70 

alternative mechanism of Pd(II) reduction which has not been investigated. 71 

 72 

E. coli produces bioPd which is comparably active to that produced by D. 73 

desulfuricans (Deplanche et al. 2014). This also provides a very useful model 74 

organism since it is facultatively anaerobic and has well-defined molecular tools to 75 
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elucidate reaction mechanisms under aerobic and anaerobic conditions. The enzymes 76 

potentially involved in the bioreduction of palladium by E. coli under the latter 77 

conditions are the nickel-dependent hydrogenase enzymes Hyd-1, Hyd-2, and Hyd-3, 78 

and the formate dehydrogenase molybdoenzymes FDH-N, and FDH-H. Another 79 

molybdoenzyme, FDH-O, is expressed under both aerobic and anaerobic conditions. 80 

A possible role for FDH-O is to allow bacteria to adapt rapidly to a sudden shift from 81 

aerobic respiration to anaerobiosis, before FDH-N has been produced in sufficient 82 

amounts to continue formate metabolism (Abaibou et al. 1995). Hyd-1, Hyd-2, FDH-83 

O, and FDH-N are membrane-bound and periplasmically oriented, whereas Hyd-3 84 

and FDH-H are subunits of the formate hydrogenlyase (FHL) complex, an 85 

intracellular enzyme complex that is also membrane-bound but which faces into the 86 

cytoplasm. The mechanisms responsible for the formate-dependent bioreduction by 87 

anaerobically-grown cultures of E. coli have been studied, showing that the 88 

hydrogenase enzymes Hyd-1 and Hyd-2 are mainly responsible for Pd(II) 89 

bioreduction (Deplanche et al. 2010). In a study of formate-dependent Pd(II) 90 

bioreduction by Desulfovibrio fructosovorans, the deletion of the periplasmic 91 

hydrogenases caused the Pd(0) nanoparticles to be relocated to the cytoplasmic 92 

membrane site of the remaining hydrogenases, indicating that the periplasmic 93 

hydrogenases are at least partially involved (Mikheenko et al. 2008). 94 

 95 

The growth yield of anaerobic cultures is lower than that of aerobic cultures, and for 96 

economic production at scale a method of growth of high biomass density is required. 97 

When using anaerobic cultures there is also the cost of supplementing with sodium 98 

fumarate and glycerol. The dual aims of this study are to establish whether E. coli 99 

cells grown aerobically are capable of manufacturing bioPd and to identify the 100 
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enzyme(s) responsible for such metal reduction. A move away from the need for 101 

anaerobic growth would simplify the preparation of high levels of active biomass for 102 

catalyst production at industrial scale. 103 

 104 

Methods 105 

Bacterial growth 106 

Starter cultures: 50 ml LB broth in a 500 ml Erlenmeyer flask was inoculated with a 107 

single isolated colony of the E. coli strain under investigation and incubated 108 

aerobically (37°C, shaking at 180 rpm for 18 h). 109 

 110 

Aerobic cultures: An 11 ml starter culture was added to 99 ml LB broth in a 1 L 111 

Erlenmeyer flask. Flasks were incubated for 24 h (37°C, 180 rpm) to produce 112 

stationary phase ‘resting’ cells. The pH of the cells after 24 h incubation was 113 

measured to determine that organic acids had not been produced that would otherwise 114 

lower the pH considerably (Vasala et al. 2006). Oxygen saturation of a 5 ml aliquot of 115 

the broth culture was measured immediately after 24 h of incubation using an Oakton 116 

D06 Acorn Series dissolved oxygen meter. 117 

 118 

Reduction of Pd(II) to produce bioPd on bacteria 119 

The aerobically grown liquid culture was divided between two 50 ml Falcon tubes 120 

and washed three times in 20 ml MOPS-NaOH (morpholinepropanesulfonic acid) 121 

buffer, 20 mM at pH7.6 after centrifugation for 20 min at 2500 g. Cell pellets were 122 

adjusted to a mass of 250 mg wet pellet weight, and resuspended in the MOPS-NaOH 123 

buffer to a volume of 1 ml. One tube of 250 mg wet weight cells was resuspended in 124 

22.5 ml MOPS-NaOH buffer with 1 mM sodium tetrachloropalladate in a 30 ml bottle 125 
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sealed with a butyl rubber stopper. The bottle was incubated in the dark at 30°C for 1 126 

h for the Pd(II) to biosorb to the cells (Baxter-Plant et al. 2003). 2.5 ml 10 mM 127 

sodium formate was then added to the bottle to initiate bioreduction of the Pd(II). 128 

 129 

Use of mutants to determine electron transfer pathway to Pd(II) 130 

In order to investigate the possible role of the aerobic formate dehydrogenase (FDH-O) 131 

and other hydrogenase/formate dehydrogenase enzymes in the reduction of Pd(II) by 132 

aerobically-grown cells of E. coli, the rates of reduction by six different additional 133 

strains (Table 1) were compared by measuring the Pd(II) remaining in solution by 134 

ICP-MS. The strains were ‘palladised’ as above, and rates of reduction/removal 135 

compared to those in a series of controls: killed cells (MC4100), cell-free suspension, 136 

and live cells (MC4100) unsupplemented with formate. 137 

 138 

All strains except BL21(DE3) were from the culture collection of Professor Frank 139 

Sargent at the College of Life Sciences, University of Dundee. Strain BL21(DE3) was 140 

obtained from Invitrogen, Paisley, UK. Strain MC4100 ∆moaA was created by 141 

disruption of the moaA gene which encodes the molybdenum cofactor biosynthesis 142 

protein A, using the method of Datsenko and Wanner (2000) whereby PCR products 143 

are used to disrupt the gene of choice by recombination using the plasmid-borne 144 

phage λ Red recombinase. 145 

 146 

X-ray diffraction (XRD) analysis 147 

The black precipitates were washed once in acetone and air dried, before analysis by 148 

X-ray diffraction (XRD). The measurements were performed on a Bruker D8 149 

Advance diffractometer, using Cu K alpha1 radiation. The samples were scanned 150 
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from 5-70 degrees 2theta in steps of 0.2 degrees, with a count time of 2 seconds per 151 

step. 152 

 153 

Extended X-ray absorption fine structure (EXAFS) 154 

Aliquots of the cell/Pd/formate suspension were taken at times 0 and 30 min, and 1, 3 155 

and 4 h from the addition of formate, and frozen immediately in liquid nitrogen. The 156 

direct reduction of Pd(II) to Pd(0) was demonstrated using EXAFS, performed at the 157 

European Synchrotron Radiation Facility (ESRF), in Grenoble, France. The samples 158 

were transported to the synchrotron at ESRF on dry ice, where they were thawed and 159 

injected immediately into sample holders, before freezing once more in liquid 160 

nitrogen and placing into the beam. X-ray absorption data were collected on beamline 161 

BM29 at the Pd K–edge in the energy range 24 200 – 24 900 eV. Data were recorded 162 

at low temperature (77 K) and under vacuum to reduce the thermal Debye-Waller 163 

factor and prevent oxidation. A Si(III) double crystal monochromator was used, 164 

calibrated with a Pd foil, and the spectra were collected in fluorescence mode using a 165 

13-element solid-state detector. A reference spectrum of a palladium foil was 166 

recorded in transmission mode on station 9.3 at the SRS Daresbury. The data were 167 

background subtracted and the EXAFS spectra fitted in DL_Excurv 168 

(http://www.cse.scitech.ac.uk/cmg/EXCURV/) using full curved wave theory 169 

(Gurman et al., 1984). 170 

 171 

Transmission electron microscopy (TEM) and energy dispersive X-ray spectroscopy 172 

(EDS) 173 

Following Pd(II) reduction, cells were stored at 10°C overnight. The cell pellets were 174 

then rinsed twice with deionised water, fixed in 2.5% (wt/vol) glutaraldehyde, 175 
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centrifuged for 5 min at 16 000 g, resuspended in 1.5 ml of 0.1 M cacodylate buffer 176 

(pH 7) and stained in 1% osmium tetroxide in 0.1 M phosphate buffer, pH 7 (60 min). 177 

Cells were dehydrated using an ethanol series (70, 90, 100, 100, 100% dried ethanol, 178 

15 min each) and washed twice in propylene oxide (15 min, 9500 g). Cells were 179 

embedded in epoxy resin and the mixture was left to polymerise (24 h; 60°C). 180 

Sections (100-150 nm thick) were cut from the resin block, placed onto a copper grid 181 

and viewed with a JEOL 1200CX2 TEM, accelerating voltage 80 keV. EDS was 182 

performed on electron-dark areas, to confirm the presence of palladium. 183 

 184 

Results 185 

Palladisation of E. coli BL21(DE3) 186 

The pH of the aerobically-grown liquid culture was between 7.7-7.9, indicating that 187 

there was not extensive production of organic acids due to overflow metabolism. 188 

Oxygen saturation measurements showed that the liquid culture was 72% saturated 189 

following 24 h of incubation, indicating that it was not oxygen-limited. After 190 

harvesting, the cells were able to couple the reduction of Pd(II) to the oxidation of 191 

formate, indicated by the rapid formation of a black precipitate, tentatively identified 192 

as Pd(0) (Figure 1). ICP-MS analysis confirmed complete removal of Pd(II) from 193 

solution within 45 min, and the presence of crystalline Pd(0) was confirmed using 194 

XRD in this, but not in the heat-killed cells control where the cells removed 195 

substantial Pd(II) abiotically. An increase in metal biosorption by heat killed biomass 196 

as compared to live cells is well documented (Machado et al. 2009; Parameswari et al. 197 

2009) and was attributed to loss of membrane integrity to reveal additional 198 

intracellular metal binding sites (Machado et al. 2009). 199 

 200 
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Extended X-ray absorption fine structure (EXAFS) 201 

The nature of the Pd associated with the biomass was assessed further using X-ray 202 

absorbance spectroscopy. The features in the corresponding EXAFS spectra (Figure 2) 203 

are due to the wave-like nature of the photoelectron, which is released from the atom 204 

with increasing energy and scattered from surrounding atoms with new waves being 205 

emitted. With increasing photon energy, the interference between the waves alternates 206 

between constructive and destructive, which leads to oscillations in the spectrum. 207 

Examining these oscillations gives information on the number, species and distance of 208 

the surrounding atoms. As seen in Figure 2, the samples taken at times 0 and 30 min, 209 

which contain Pd(II), have identical EXAFS spectra. The samples taken at 60 min 210 

onwards are identical to the Pd(0) foil control, which indicates that only Pd(0) was 211 

present. Reduction of the Pd(II) to Pd(0) was therefore confirmed to be complete in 212 

less than 30 min, as confirmed by ICP-MS analysis. 213 

 214 

Use of mutants to determine electron transfer pathway to Pd(II) 215 

Aerobic cultures of the parental strains MC4100 and BW25113 and the strain which 216 

lacked all hydrogenases (JW2682) removed Pd(II) identically with no residual Pd(II) 217 

detected after 30 min (Figure 3). Removal of the hydrogenase enzymes had no effect 218 

on the rate of palladium removal from solution, confirming that these hydrogenases 219 

have no role in the aerobic reduction of Pd(II). The FDH-O-negative strain JW3865 220 

reduced Pd(II) within 1 h, and the FDH-O/FDH-N-negative strain FTD128 within 2 h. 221 

Strain MC4100 ∆moaA, lacking all molybdoenzymes, reduced the palladium within 7 222 

h. These results indicate the likely involvement of the FDH-O enzyme in the 223 

reduction of Pd(II) by aerobically-grown E. coli using formate, although other Mo-224 

containing enzymes must also be involved given the impaired metal reduction noted 225 
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with the ∆moa mutant. Controls containing no biomass showed no abiotic reduction 226 

of Pd(II) using formate (Figure 1B), although a brown precipitate was seen in the no-227 

formate control. The X-ray powder diffraction pattern did not show the presence of 228 

any peaks characteristic of Pd(0) in this precipitate, indicating that it was probably 229 

amorphous and non-crystalline. Time zero on Figure 3 is the point at which formate 230 

was added, following 1 h of incubation to allow biosorption of the Pd(II) to the cells; 231 

hence the abiotic Pd(II) removal by killed cells (Figure 1) was apparent at the time of 232 

formate addition with no evidence for further Pd(II) reduction. 233 

 234 

Transmission electron microscopy (TEM) 235 

TEM images of thin sections of cells showed that with all strains the reduced 236 

palladium was precipitated predominantly in the extracellular matrix of the cultures 237 

(Figure 4), although it appears that the nanoparticles may be associated with the outer 238 

membrane of the cells. Energy dispersive X-ray spectroscopy (EDS) confirmed the 239 

presence of palladium in these precipitates. 240 

 241 

Discussion 242 

The results from this study demonstrate that it is possible for aerobically-grown 243 

cultures of E. coli to reduce Pd(II) enzymatically, with no need to remove oxygen 244 

from the experimental system during the bioreduction step. Autoclaved control 245 

experiments indicate that Pd(II) bioreduction in these cultures is enzymatic, with 246 

reduction of palladium not occurring in the absence of viable cells irrespective of the 247 

length of incubation. The major enzymes shown to be involved include the formate 248 

dehydrogenases FDH-O and FDH-N, although bioreduction still occurs in strains 249 

without these enzymes albeit at a much lower rate. Other molybdoenzymes must 250 
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therefore be involved. The strain that lacked all molybdoenzymes did however still 251 

reduce the palladium, although this took 7 h, compared with less than 30 min by the 252 

wild-type strains. Hydrogenases, implicated as the dominant Pd(II) reductases in other 253 

experimental systems grown under anaerobic conditions (Deplanche et al. 2010; 254 

Mikheenko et al. 2008), are not expressed in aerobically grown cultures, and their 255 

lack of involvement was evident as the strain lacking hydrogenase enzymes reduced 256 

palladium at the same rate as the wild-type strains in this study. 257 

 258 

Furthermore, whichever biological system is responsible for the aerobic bioreduction 259 

of Pd(II), there seems to be little impact on the site of Pd(0) deposition. The location 260 

of the bioreduced Pd(0) in our experiments is almost always extracellular, although 261 

often associated with the outer membrane of the cells. This is particularly the case 262 

with the MC4100 ∆moaA strain (which lacks all molybdoenzymes), in which the 263 

majority of the Pd(0) nanoparticles are closely associated with the outer membrane 264 

(Figure 4E). One conclusion that may be drawn from this is that whilst cells that lack 265 

the formate dehydrogenases are still capable of reducing Pd(II), when all of these 266 

enzymes are missing a cellular component associated with the outer membrane may 267 

be responsible. Furthermore, this formate oxidation activity is much weaker than that 268 

seen with the strains containing formate dehydrogenases, where Pd(II) reduction is 269 

more rapid. It is possible however that following the initial enzymatic reduction of a 270 

small percentage of the Pd(II), the Pd(0) nanoparticles formed may themselves be 271 

responsible for catalysing the reduction of the remainder of the Pd(II) (Yong et al. 272 

2002), which would mean that only a minor, initial biological input is required. 273 

 274 
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Although the formate dehydrogenase enzyme systems implicated in Pd(II) 275 

bioreduction by E. coli are periplasmic, the majority of the reduced Pd(0) precipitates 276 

outside the cell. It is possible that an electron shuttle system exists similar to that 277 

found in Shewanella oneidensis (von Canstein et al. 2008) that is as yet undiscovered 278 

in E. coli. It is also possible that the first Pd(0) nanoparticles to form breach the outer 279 

membrane, and themselves form an electron conduit for further Pd(II) reduction 280 

outside the cell. The pH of these experiments is also higher than others where Pd(0) 281 

nanoparticles accumulated in the periplasm (Redwood et al. 2008), which could 282 

indicate the higher biosorption of cationic metal to the outer membrane and 283 

extracellular polymeric substances, which are then not able to enter the periplasm. 284 

The influence of a higher pH in the location of the Pd(0) may be confirmed by the 285 

observation that Pd(0) nanoparticles were located on the cell surface of D. 286 

desulfuricans when bioreduction of Pd(II) was performed at pH 7 (Yong et al. 2002). 287 

 288 

In conclusion, this study has demonstrated the presence of a novel biological 289 

mechanism responsible for the bioreduction of Pd(II) in aerobically-grown cultures of 290 

E. coli, catalysed mainly by molybdenum-containing enzyme systems. Subsequent 291 

studies will investigate the catalytic activity and selectivity of the Pd(0) nanoparticles 292 

produced under aerobic conditions in a range of industrially important reactions. If 293 

active, this new form of bioPd has the advantage over that produced by anaerobic 294 

culture as it is easier to produce at high yield, from increased biomass levels 295 

associated with aerobic growth. There is also no requirement for additional processing 296 

steps to remove H2S (produced by SRB systems), and the use of formate instead of 297 

hydrogen gas means that the procedure is less hazardous and more controllable. The 298 

advantages of this more scalable method of synthesis would need to be considered 299 
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against any alterations in activity/selectivity of the resulting catalyst (versus synthetic 300 

and other bioPds), using a cost-benefit analysis. Importantly, identification of the 301 

specific enzymatic process(es) involved in the biomanufacture of bioPd is the first 302 

step towards application of the tools of synthetic biology for ‘designer catalyst’ 303 

production for specific applications. 304 

 305 

In a geomicrobiological context, this study shows that aerobic cells of E. coli restrict 306 

the deposition of Pd(0) to locations outside the cell. However in both D. desulfuricans 307 

(grown anaerobically) and Bacillus benzeovorans (grown aerobically) intracellular 308 

depositions of small Pd-nanoparticles were observed at the expense of both hydrogen 309 

and formate (JB Omajali, IP Mikheenko, ML Merroun, J Wood and LE Macaskie, in 310 

press) and, notably, were also seen in E. coli grown anaerobically (LE Macaskie, A 311 

Williams, R Priestley and J Courtney, unpublished). This raises questions about 312 

potential biochemical ‘trafficking’ pathways of Pd(II), the possibility of  Pd(II) efflux 313 

by aerobic (but not anaerobic) cells and, following from that, the possibility of 314 

biogeochemical cycling of this element. 315 
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Table 1. E. coli strains used to determine biological involvement in the reduction of 495 

palladium (II) using formate as the electron donor. 496 

Strain Genotype Phenotype Reference 

BL21(DE3) F2 ompT gal dcm lon 

hsdSB(rB
–
 mB

–
) λ(DE3 

[lacI lacUV5-T7 gene 1 

ind1 sam7 nin5]) 

Wild type strain 

commonly used for 

recombinant protein 

expression. 

(Studier and 

Moffatt 1986) 

MC4100 F- ∆lacU169 araD139 

rpsL150 relA1 ptsF rbs 

flbB5301 

Parental strain for 

FTD128 and 

∆moaA. 

(Casadaban 

and Cohen 

1979) 

BW25113 lacl
q
 rrbBT14 ∆lacZWJ16 

hsdR514 ∆araBADAH33 

∆rhaBADLD78 

Parental strain for 

JW2682 and 

JW3865. 

(Datsenko and 

Wanner 2000) 

FTD128 As MC4100, with in-

frame deletion in the 

fdhE gene. 

FDH-O & FDH-N 

negative. 

(Luke et al. 

2008) 

JW2682 As BW25113, with in-

frame deletion of the 

hypF gene. 

Deficient in all 

hydrogenases. 

(Baba et al. 

2006) 

JW3865 As BW25113, with in-

frame deletion of the 

fdoG gene. 

FDH-O negative. (Baba et al. 

2006) 

MC4100 ∆moaA As MC4100, disruption 

of the moaA gene. 

Deficient in all 

molybdoenzymes 

This study. 

 497 

 498 

 499 

 500 

 501 

 502 
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Fig. 1. (A) Complete reduction of Pd(II) to Pd(0) by an aerobically-grown culture of 503 

E. coli. Both bottles contain cells resuspended in 20 mM MOPS buffer at pH7.6, and 504 

1 mM sodium tetrachloropalladate (total volume 25 ml). This image was taken 45 min 505 

after the addition of formate to the bottle on the right. (B) Reduction by E. coli 506 

MC4100 and by controls showing no abiotic reduction of Pd(II). Controls used were 507 

killed (autoclaved) cells and cell-free suspension. Soluble Pd(II) in the supernatant 508 

was measured using ICP-MS. ▲ = MC4100; ■ = no cells; ♦ = killed cells. 509 

 510 

Fig. 2. EXAFS data showing the presence of Pd(II) at 0 and 30 min (bottom two 511 

traces), and Pd(0) at 1, 3 and 4 h (ascending series). The top trace is palladium foil. 512 

 513 

Fig. 3. Pd(II) reduction by six different strains of E. coli, using formate as the electron 514 

donor. Soluble Pd(II) in the supernatant was measured using ICP-MS. ♦ = BW25113; 515 

□ = JW2682; ▲ = JW3865; Δ = MC4100 ∆moaA; ■ = MC4100; ◊ = FTD128. Data 516 

points for BW25113, JW2682 and JW3865 are mean values of triplicates, with 517 

standard error shown. 518 

 519 

Fig. 4. TEM of thin sections of aerobically grown cells showing extracellular 520 

palladium; (A) MC4100, inset BL21; (B) BW25113, inset BL21 (no Pd); (C) 521 

FTD128; (D) JW2682; (E) MC4100 ∆moaA; (F) JW3865. Scale bar (A) = 100 nm; 522 

(B)-(F) = 500 nm; insets = 1µm. 523 

 524 

 525 

 526 
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Figure 1 528 
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 531 

Figure 2 532 
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Figure 4 552 
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