206 research outputs found

    Discovery of X-rays from Mars with Chandra

    Get PDF
    On 4 July 2001, X-rays from Mars were detected for the first time. The observation was performed with the ACIS-I detector onboard Chandra and yielded data of high spatial and temporal resolution, together with spectral information. Mars is clearly detected as an almost fully illuminated disk, with an indication of limb brightening at the sunward side, accompanied by some fading on the opposite side. The morphology and the X-ray luminosity of ~4 MW are fully consistent with fluorescent scattering of solar X-rays in the upper Mars atmosphere. The X-ray spectrum is dominated by a single narrow emission line, which is most likely caused by O-K_alpha fluorescence. No evidence for temporal variability is found. This is in agreement with the solar X-ray flux, which was almost constant during the observation. In addition to the X-ray fluorescence, there is evidence for an additional source of X-ray emission, indicated by a faint X-ray halo which can be traced to about three Mars radii, and by an additional component in the X-ray spectrum of Mars, which has a similar spectral shape as the halo. Within the available limited statistics, the spectrum of this component can be characterized by 0.2 keV thermal bremsstrahlung emission. This is indicative of charge exchange interactions between highly charged heavy ions in the solar wind and exospheric hydrogen and oxygen around Mars. Although the observation was performed at the onset of a global dust storm, no evidence for dust-related X-ray emission was found.Comment: 11 pages, 16 figure

    Deep XMM-Newton observation of a northern LMC field: I. Selected X-ray sources

    Get PDF
    First results from a deep XMM-Newton observation of a field in the Large Magellanic Cloud (LMC) near the northern rim of the supergiant shell LMC 4 are presented. Spectral and temporal analyses of a sample of selected X-ray sources yielded two new candidates for supernova remnants, a supersoft X-ray source and a likely high mass X-ray binary (HMXB) pulsar. From the fourteen brightest sources up to ten are active galactic nuclei in the background of the galaxy which can be used as probes for the interstellar medium in the LMC. From the three previously known HMXBs the Be/X-ray binary EXO 053109-6609.2 was the brightest source in the field, allowing a more detailed analysis of its X-ray spectrum and pulse profile. During the pulse EXO 053109-6609.2 shows eclipses of the X-ray emitting areas with increased photo-electric absorption before and after the eclipse. The detection of X-ray pulsations with a period of 69.2 s is confirmed for RX J0529.8-6556 and a possible period of 272 s is discovered from XMMU J053011.2-655122. The results are discussed with respect to individual sources as well as in the view of source population studies in the vicinity of the supergiant shell LMC 4

    Multiwavelength appearance of Vela Jr.: Is it up to expectations?

    Get PDF
    Vela Jr. is one of the youngest and likely nearest among the known galactic supernova remnants (SNRs). Discovered in 1997 it has been studied since then at quite a few wavelengths, that spread over almost 20 decades in energy. Here we present and discuss Vela Jr. properties revealed by these multiwavelength observations, and confront them with the SNR model expectations. Questions that remained unanswered at the time of publication of the paper of Iyudin et al. (2005), e.g. what is the nature of the SNR's proposed central compact source CXOU J085201.4-461753, and why is the ISM absorption column density apparently associated with RX J0852.0-4622 much greater than the typical column of the Vela SNR, can be addressed using the latest radio and X-ray observations of Vela Jr.. These, and other related questions are addressed in the following.Comment: 8 pages, 7 figures. Accepted for publication in ESA SP-622, Proceedings of the 6th INTEGRAL Workshop held in Moscow, Russia, July 02-08, 200

    AGN in the XMM-Newton first-light image as probes for the interstellar medium in the LMC

    Get PDF
    The XMM-Newton first-light image revealed X-ray point sources which show heavily absorbed power-law spectra. The spectral indices and the probable identification of a radio counterpart for the brightest source suggest AGN shining through the interstellar gas of the Large Magellanic Cloud (LMC). The column densities derived from the X-ray spectra in combination with HI measurements will allow to draw conclusions on HI to H_2 ratios in the LMC and compare these with values found for the galactic plane.Comment: 4 pages, LaTex, 4 figures, Accepted for publication in A&A Letter
    corecore