64 research outputs found

    Scanning Electron Microscopy and Energy-Dispersive X-Ray Microanalysis Studies of Early Dental Calculus on Resin Plates Exposed to Human Oral Cavities

    Get PDF
    Dental calculus formed after 10 days on resin plates, applied to the lingual sides of the mandibular gingival regions in eight human subjects, was investigated by means of scanning electron microscopy (SEM) and energy-dispersive X-ray microanalysis (EDX). The mineral deposits were mainly divided into three types: A, B, and C. The type A deposits showing an average Ca/P molar ratio of 1.42 were densely packed with fine needle-shaped crystals formed by the intra- and extracellular calcification. The type A deposits, probably composed of Ca-deficient apatites and the transitional forms between apatite and octacalcium phosphate (OCP), were observed in all subjects. The type B deposits showing an average Ca/P molar ratio of 0.96 were aggregated with polygonal column, triangular plate-shaped, and rhombohedral crystals. These crystals identified as brushite (CaHPO4-2H2O: dicalcium phosphate dihydrate: DCPD) were found in four subjects. Platelet-shaped crystals of the type C deposits were observed in three subjects. Their Ca/P molar ratio of 1.26 and the crystal shape were similar to those of OCP. Whitlockite crystals were not found although Mg-containing hexagonal disk-like crystals were observed in two subjects

    Heterogeneity of Crystals Attached to the Human Enamel and Cementum Surfaces After Calculus Removal In Vitro

    Get PDF
    Twenty one extracted human teeth with dental calculi on the enamel and cementum surfaces, fixed in 10% neutral formaldehyde, were selected for this study. After ethanol dehydration and air drying, these calculi were removed by tweezers to observe the teeth surfaces under them. The inspection of these surfaces using SEM and EDX revealed hexahedrally based crystals including pseudocuboidal, rhombohedral and variable rugged rocky shapes. These crystals were identified as Mg-containing whitlockite. The pseudocuboidal crystals, measuring about 4.5 ÎŒmin maximum length, were widely distributed on the cervical enamel surface previously covered by calculus. On the root surface, however, these areas decreased remakably; the shapes c hanged from pseudocubes into rhombohedrons and rugged rocky structures, while their sizes were smaller and the Mg content decreased. The difference in frequency and morphological variation of the hexahedrally based crystals might be caused by the different characteristics of enamel and cementum surfaces and the Mg present on these surfaces

    The Materiobiology of Silk: Exploring the Biophysical Influence of Silk Biomaterials on Directing Cellular Behaviors

    Get PDF
    Biophysical properties of the extracellular environment dynamically regulate cellular fates. In this review, we highlight silk, an indispensable polymeric biomaterial, owing to its unique mechanical properties, bioactive component sequestration, degradability, well-defined architectures, and biocompatibility that can regulate temporospatial biochemical and biophysical responses. We explore how the materiobiology of silks, both mulberry and non-mulberry based, affect cell behaviors including cell adhesion, cell proliferation, cell migration, and cell differentiation. Keeping in mind the novel biophysical properties of silk in film, fiber, or sponge forms, coupled with facile chemical decoration, and its ability to match functional requirements for specific tissues, we survey the influence of composition, mechanical properties, topography, and 3D geometry in unlocking the body’s inherent regenerative potential

    Expedition 350 methods

    Get PDF
    Introduction This chapter of the International Ocean Discovery Program (IODP) Expedition 350 Proceedings volume documents the procedures and tools employed in the various shipboard laboratories of the R/V JOIDES Resolution during Expedition 350. This information applies only to shipboard work described in the Expedition Reports section of this volume. Methods for shore-based analyses of Expedition 350 samples and data will be described in the individual scientific contributions to be published in the open literature or in the Expedition Research Results section of this volume. This section describes procedures and equipment used for drilling, coring, and hole completion; core handling; computation of depth for samples and measurements; and sequence of shipboard analyses. Subsequent sections describe specific laboratory procedures and instruments in more details

    Izu-Bonin-Mariana Rear Arc - The missing half of the subduction factory, 30 March – 30 May 2014

    Get PDF
    International Ocean Discovery Program (IODP) Hole U1436A (proposed Site IBM-4GT) lies in the western part of the Izu fore-arc basin, ~60 km east of the arc-front volcano Aogashima, ~170 km west of the axis of the Izu-Bonin Trench, 1.5 km west of Ocean Drilling Program (ODP) Site 792, and at 1776 meters below sea level (mbsl). It was drilled as a 150 m deep geotechnical test hole for potential future deep drilling (5500 meters below seafloor [mbsf]) at proposed Site IBM-4 using the D/V Chikyu. Core from Site U1436 yielded a rich record of Late Pleistocene explosive volcanism, including distinctive black glassy mafic ash layers that may record large-volume eruptions on the Izu arc front. Because of the importance of this discovery, Site U1436 was drilled in three additional holes (U1436B, U1436C, and U1436D), as part of a contingency operation, in an attempt to get better recovery on the black glassy mafic ash layers and enclosing sediments and to better constrain the thickness of the mafic ash layers. IODP Site U1437 is located in the Izu rear arc, ~330 km west of the axis of the Izu-Bonin Trench and ~90 km west of the arc-front volcanoes Myojinsho and Myojin Knoll, at 2117 mbsl. The primary scientific objective for Site U1437 was to characterize “the missing half of the subduction factory”; this was because numerous ODP/Integrated Ocean Drilling Program sites had been drilled in the arc to fore-arc region (i.e., ODP Site 782A Leg 126), but this was the first site to be drilled in the rear part of the Izu arc. A complete view of the arc system is needed to understand the formation of oceanic arc crust and its evolution into continental crust. Site U1437 on the rear arc had excellent core recovery in Holes U1437B and U1437D, and we succeeded in hanging the longest casing ever in the history of R/V JOIDES Resolution scientific drilling (1085.6 m) in Hole U1437E and cored to 1806.5 mbsf. The stratigraphy at Site U1437 was divided into seven lithostratigraphic units (I–VII) that were distinguished from each other based on the proportions and characteristics of tuffaceous mud/mudstone and interbedded tuff, lapilli tuff, and tuff breccia. The section is much more mud rich than expected, with ~60% tuffaceous mud for the section as a whole (89% in the uppermost 433 m) and high sedimentation rates of 100–260 m/My for the upper 1320 m (Units I–V). The proportion (40%) and grain size of tephra are much smaller than expected for an intra-arc basin, composed half of ash/tuff and half of lapilli tuff of fine grain size (clasts < 3 cm). These were deposited by suspension settling through water and from density currents, in relatively distal settings. Volcanic blocks are only sparsely scattered through the lowermost 25% of the section (Units VI and VII, 1320–1806.5 mbsf), which includes hyaloclastite, in situ quench-fragmented blocks, and a rhyolite peperite intrusion (i.e., proximal deposits). The transition from unconsolidated to lithified rocks occurred progressively; however, sediments were considered lithified from 427 mbsf (top of Hole U1437D) downward. Alteration resulted in destruction of fresh glass from ~750 mbsf downward, but minerals are less altered. Because of the alteration, the deepest biostratigraphic datum was at ~850 mbsf and the deepest paleomagnetic datum was at ~1300 mbsf. Additional age control deeper than this depth is provided by an age range of 10.97–11.85 Ma inferred from a nannofossil assemblage at ~1403 mbsf and a preliminary U-Pb zircon concordia intercept age of 13.6 +1.6/–1.7 Ma, measured postcruise on a rhyolite peperite in Unit VI at ~1390 mbsf. Based on the seismic profiles, the Miocene–Oligocene hiatus (~17–23 Ma) was predicted to lie at ~1250 mbsf, but strata at that depth (Unit V, 1120–1312 mbsf) are much younger (~9 Ma), indicating that we recovered a thicker Neogene section of volcaniclastics and associated igneous rocks than anticipated. Our preliminary interpretation of shipboard geochemistry is that arc-front versus rear-arc sources can be distinguished in the upper, relatively distal 1320 m of section (Units I–V), whereas the lower, proximal 25% of the section (Units VI–VII) may be geochemically heterogeneous, suggesting that the rear-arc magmas only fully compositionally diverged after ~13 Ma

    Expedition 350 summary

    Get PDF
    International Ocean Discovery Program (IODP) Hole U1436A (proposed Site IBM-4GT) lies in the western part of the Izu fore-arc basin, ~60 km east of the arc-front volcano Aogashima, ~170 km west of the axis of the Izu-Bonin Trench, and 1.5 km west of Ocean Drilling Program (ODP) Site 792, at 1776 meters below sea level (mbsl). It was drilled as a 150 m deep geotechnical test hole for potential future deep drilling (5500 meters below seafloor [mbsf]) at proposed Site IBM-4 using the D/V Chikyu. Core from Site U1436 yielded a rich record of Late Pleistocene explosive volcanism, including a distinctive black glassy mafic ash layer that may record a large-volume subaqueous eruption on the Izu arc front. Because of the importance of this discovery, Site U1436 was drilled in three additional holes (U1436B, U1436C, and U1436D), as part of a contingency operation, in an attempt to get better recovery on the black glassy mafic ash layer and its enclosing sediments and to better constrain its thickness. IODP Site U1437 is located in the Izu rear arc, ~330 km west of the axis of the Izu-Bonin Trench and ~90 km west of the arc-front volcanoes Myojinsho and Myojin Knoll, at 2117 mbsl. The primary scientific objective for Site U1437 was to characterize “the missing half of the subduction factory” because numerous ODP/Integrated Ocean Drilling Program sites had been drilled in the arc-front to fore-arc region (i.e., ODP Site 782A Leg 126), but this was the first site to be drilled in the rear-arc region of the Izu arc. A complete view of the arc system is needed to understand the formation of oceanic arc crust and its evolution into continental crust. Site U1437 on the rear arc had excellent core recovery in Holes U1437B and U1437D, and we succeeded in hanging the longest casing ever in the history of R/V JOIDES Resolution scientific drilling (1085.6 m) in Hole U1437E and cored to 1806.5 mbsf. The stratigraphy at Site U1437 was divided into seven lithostratigraphic units (I–VII) that were distinguished from each other based on the proportions and characteristics of tuffaceous mud/mudstone and interbedded tuff, lapilli-tuff, and tuff-breccia. The section is much more mud rich than expected, with ~60% tuffaceous mud for the section as a whole (89% in the uppermost 433 m) and high sedimentation rates of 100–260 m/My for the upper 1320 m (Units I–V). The proportion (40%) and grain size of volcaniclastics are much smaller than expected for an intra-arc basin, composed half of ash/tuff and half of lapilli-tuff of fine grain size (clasts <3 cm). These volcaniclastics were deposited by suspension settling through water and from density currents, in relatively distal settings. Volcanic blocks are only sparsely scattered through the lowermost 25% of the section (Units VI and VII, 1320–1806.5 mbsf), which includes hyaloclastite, in situ quench-fragmented blocks, and a rhyolite peperite intrusion (i.e., proximal deposits). The transition from unconsolidated to lithified rocks occurred progressively; however, sediments were considered lithified from 427 mbsf (top of Hole U1437D) downward. Alteration resulted in destruction of fresh glass from ~750 mbsf downward, but minerals are less altered. Because of the alteration, the deepest biostratigraphic datum was at ~850 mbsf and the deepest paleomagnetic datum was at ~1300 mbsf. Additional age control deeper than ~1300 mbsf is provided by an age range of 10.97–11.85 Ma inferred from a nannofossil assemblage at ~1403 mbsf and a preliminary U-Pb zircon concordia intercept age of 13.6 +1.6/−1.7 Ma, measured postcruise on a rhyolite peperite in Unit VI at ~1390 mbsf. Based on the seismic profiles, the Miocene–Oligocene hiatus (~17–23 Ma) was predicted to lie at ~1250 mbsf, but strata at that depth (Unit V, 1120–1312 mbsf) are much younger (~9 Ma), indicating that we recovered a thicker Neogene section of volcaniclastics and associated igneous rocks than anticipated. Our preliminary interpretation of shipboard geochemistry of solids is that arc-front versus rear-arc sources can be distinguished for individual intervals in the upper, relatively distal 1320 m of the section (Units I–V), whereas data for the lower, proximal 25% of the section (Units VI–VII) overlap and exceed the compositional fields for Neogene rear-arc seamounts and Quaternary arc-front volcanoes. This suggests that the compositional divergence between arc-front and rear-arc magmas only fully developed after ~13 Ma

    Hazardous explosive eruptions of a recharging multi-cyclic island arc caldera

    Get PDF
    Caldera-forming eruptions of silicic volcanic systems are among the most devastating events on Earth. By contrast, post-collapse volcanic activity initiating new caldera cycles is generally considered less hazardous. Formed after Santorini’s latest caldera-forming eruption of ~1600 bce, the Kameni Volcano in the southern Aegean Sea enables the eruptive evolution of a recharging multi-cyclic caldera to be reconstructed. Santorini’s eruptive record has been documented by onshore products and historical descriptions of mainly effusive eruptions dating back to 197 bce. Here we combine high-resolution seismic reflection data with cored lithologies from International Ocean Discovery Program Expedition 398 at four sites to determine the submarine architecture and volcanic history of intra-caldera deposits from Kameni. Our shore-crossing analysis reveals the deposits of a submarine explosive eruption that produced up to 3.1 km3 of pumice and ash, which we relate to a historical eruption in 726 ce. The estimated volcanic explosivity index of magnitude 5 exceeds previously considered worst-case eruptive scenarios for Santorini. Our finding that the Santorini caldera is capable of producing large explosive eruptions at an early stage in the caldera cycle implies an elevated hazard potential for the eastern Mediterranean region, and potentially for other recharging silicic calderas

    Izu-Bonin-Mariana Rear Arc: The Missing Half of the Subduction Factory

    Get PDF
    4GT) lies in the western part of the Izu fore-arc basin, ~60 km east of the arc-front volcano Aogashima, ~170 km west of the axis of the Izu-Bonin Trench, 1.5 km west of Ocean Drilling Program (ODP) Site 792, and at 1776 meters below sea level (mbsl). It was drilled as a 150 m deep geotechnical test hole for potential future deep drilling (5500 meters below seafloor [mbsf]) at proposed Site IBM-4 using the D/V Chikyu. Core from Site U1436 yielded a rich record of Late Pleistocene explosive volcanism, including distinctive black glassy mafic ash layers that may record large-volume eruptions on the Izu arc front. Because of the importance of this discovery, Site U1436 was drilled in three additional holes (U1436B, U1436C, and U1436D), as part of a contingency operation, in an attempt to get better recovery on the black glassy mafic ash layers and enclosing sediments and to better constrain the thickness of the mafic ash layers. IODP Site U1437 is located in the Izu rear arc, ~330 km west of the axis of the IzuBonin Trench and ~90 km west of the arc-front volcanoes Myojinsho and Myojin Knoll, at 2117 mbsl. The primary scientific objective for Site U1437 was to characterize “the missing half of the subduction factory”; this was because numerous ODP/Integrated Ocean Drilling Program sites had been drilled in the arc to fore-arc region (i.e., ODP Site 782A Leg 126), but this was the first site to be drilled in the rear part of the Izu arc. A complete view of the arc system is needed to understand the formation of oceanic arc crust and its evolution into continental crust. Site U1437 on the rear arc had excellent core recovery in Holes U1437B and U1437D, and we succeeded in hanging the longest casing ever in the history of R/V JOIDES Resolution scientific drilling (1085.6 m) in Hole U1437E and cored to 1806.5 mbsf

    Science and technology of BOREXINO: A Real time detector for low-energy solar neutrinos: A Real Time Detector for Low Energy Solar Neutrinos

    Get PDF
    BOREXINO, a real-time device for low energy neutrino spectroscopy is nearing completion of construction in the underground laboratories at Gran Sasso, Italy (LNGS). The experiment's goal is the direct measurement of the flux of 7Be solar neutrinos of all flavors via neutrino-electron scattering in an ultra-pure scintillation liquid. Seeded by a series of innovations which were brought to fruition by large scale operation of a 4-ton test detector at LNGS, a new technology has been developed for BOREXINO. It enables sub-MeV solar neutrino spectroscopy for the first time. This paper describes the design of BOREXINO, the various facilities essential to its operation, its spectroscopic and background suppression capabilities and a prognosis of the impact of its results towards resolving the solar neutrino problem. BOREXINO will also address several other frontier questions in particle physics, astrophysics and geophysics
    • 

    corecore