637 research outputs found

    Adsorption and desorption dynamics of citric acid anions in soil

    Get PDF
    The functional role of organic acid anions (e.g. citrate, oxalate, malonate, etc) in soil has been intensively investigated with special focus either on (i) microbial respiration and soil carbon dynamics, (ii) nutrient solubilization, or (iii) metal detoxification. Considering the potential impact of sorption processes on the functional significance of these effects, comparatively little is known about the adsorption and desorption dynamics of organic acid anions in soils. The aim of this study therefore was to experimentally characterize the adsorption and desorption dynamics of organic acid anions in different soils using citrate as a model carboxylate. Results showed that both adsorption and desorption processes were fast, reaching a steady state equilibrium solution concentration within approximately 1 hour. However, for a given total soil citrate concentration(ctot) the steady state value obtained was critically dependent on the starting conditions of the experiment (i.e. whether most of the citrate was initially present in solution (cl) or held on the solid phase (cs)). Specifically, desorption-led processes resulted in significantly lower equilibrium solution concentrations than adsorption led processes indicating time-dependent sorption hysteresis. As it is not possible to experimentally distinguish between different sorption pools in soil (i.e. fast, slow, irreversible adsorption/desorption), a new dynamic hysteresis model was developed that relies only on measured soil solution concentrations. The model satisfactorily explained experimental data and was able to predict dynamic adsorption and desorption behaviour. To demonstrate its use we applied the model to two relevant scenarios (exudation and microbial degradation), where the dynamic sorption behaviour of citrate occurs. Overall, this study highlights the complex nature of citrate sorption in soil and concludes that existing models need to incorporate both a temporal and sorption hysteresis component to realistically describe the role and fate of organic acids in soil processes

    Challenges in imaging and predictive modeling of rhizosphere processes

    Get PDF
    Background Plant-soil interaction is central to human food production and ecosystem function. Thus, it is essential to not only understand, but also to develop predictive mathematical models which can be used to assess how climate and soil management practices will affect these interactions. Scope In this paper we review the current developments in structural and chemical imaging of rhizosphere processes within the context of multiscale mathematical image based modeling. We outline areas that need more research and areas which would benefit from more detailed understanding. Conclusions We conclude that the combination of structural and chemical imaging with modeling is an incredibly powerful tool which is fundamental for understanding how plant roots interact with soil. We emphasize the need for more researchers to be attracted to this area that is so fertile for future discoveries. Finally, model building must go hand in hand with experiments. In particular, there is a real need to integrate rhizosphere structural and chemical imaging with modeling for better understanding of the rhizosphere processes leading to models which explicitly account for pore scale processes

    N-terminal lipid modification is required for the stable accumulation of CyanoQ in Synechocystis sp. PCC 6803

    Get PDF
    © 2016 Juneau et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. The CyanoQ protein has been demonstrated to be a component of cyanobacterial Photosystem II (PS II), but there exist a number of outstanding questions concerning its physical association with the complex. CyanoQ is a lipoprotein; upon cleavage of its transit peptide by Signal Peptidase II, which targets delivery of the mature protein to the thylakoid lumenal space, the N-terminal cysteinyl residue is lipid-modified. This modification appears to tether this otherwise soluble component to the thylakoid membrane. To probe the functional significance of the lipid anchor, mutants of the CyanoQ protein have been generated in Synechocystis sp. PCC 6803 to eliminate the N-terminal cysteinyl residue, preventing lipid modification. Substitution of the N-terminal cysteinyl residue with serine (Q-C22S) resulted in a decrease in the amount of detectable CyanoQ protein to 17% that of the wild-type protein. Moreover, the physical properties of the accumulated Q-C22S protein were consistent with altered processing of the CyanoQ precursor. The Q-C22S protein was shifted to a higher apparent molecular mass and partitioned in the hydrophobic phase in TX-114 phase-partitioning experiments. These results suggest that the hydrophobic N-terminal 22 amino acids were not properly cleaved by a signal peptidase. Substitution of the entire CyanoQ transit peptide with the transit peptide of the soluble lumenal protein PsbO yielded the Q-SS mutant and resulted in no detectable accumulation of the modified CyanoQ protein. Finally, the CyanoQ protein was present at normal amounts in the PS II mutant strains ΔpsbB and ΔpsbO, indicating that an association with PS II was not a prerequisite for stable CyanoQ accumulation. Together these results indicate that CyanoQ accumulation in Synechocystis sp. PCC 6803 depends on the presence of the N-terminal lipid anchor, but not on the association of CyanoQ with the PS II complex

    The effect of root exudates on rhizosphere water dynamics

    Get PDF
    L.J.C. and N.K. are funded by BBSRC SARISA BB/L025620/1, L.J.C. is also funded by EPSRC EP/P020887/1. K.R.D. is funded by ERC 646809DIMR. P.D.H. and T.S.G. are funded by BBSRC BB/J00868/1. The James Hutton Institute receives funding from the Scottish Government. T.R. is funded by BBSRC SARISA BB/L025620/1, EPSRC EP/M020355/1, ERC 646809DIMR, BBSRC SARIC BB/P004180/1 and NERC NE/L00237/1. Data supporting this study are available on request from the University of Southampton repository at https://doi.org/10.5258/SOTON/D0609 [35].Peer reviewedPublisher PD

    Action research and democracy

    Get PDF
    This contribution explores the relationship between research and learning democracy. Action research is seen as being compatible with the orientation of educational and social work research towards social justice and democracy. Nevertheless, the history of action research is characterized by a tension between democracy and social engineering. In the social-engineering approach, action research is conceptualized as a process of innovation aimed at a specific Bildungsideal. In a democratic approach action research is seen as research based on cooperation between research and practice. However, the notion of democratic action research as opposed to social engineering action research needs to be theorized. So called democratic action research involving the implementation by the researcher of democracy as a model and as a preset goal, reduces cooperation and participation into instruments to reach this goal, and becomes a type of social engineering in itself. We argue that the relationship between action research and democracy is in the acknowledgment of the political dimension of participation: ‘a democratic relationship in which both sides exercise power and shared control over decision-making as well as interpretation’. This implies an open research design and methodology able to understand democracy as a learning process and an ongoing experiment

    The extrinsic proteins of Photosystem II

    Get PDF
    In this review we examine the structure and function of the extrinsic proteins of Photosystem II. These proteins include PsbO, present in all oxygenic organisms, the PsbP and PsbQ proteins, which are found in higher plants and eukaryotic algae, and the PsbU, PsbV, CyanoQ, and CyanoP proteins, which are found in the cyanobacteria. These proteins serve to optimize oxygen evolution at physiological calcium and chloride concentrations. They also shield the Mn 4CaO 5 cluster from exogenous reductants. Numerous biochemical, genetic and structural studies have been used to probe the structure and function of these proteins within the photosystem. We will discuss the most recent proposed functional roles for these components, their structures (as deduced from biochemical and X-ray crystallographic studies) and the locations of their proposed binding domains within the Photosystem II complex. This article is part of a Special Issue entitled: Photosystem II. © 2011 Elsevier B.V. All rights reserved

    On the stability of periodic orbits in delay equations with large delay

    Get PDF
    We prove a necessary and sufficient criterion for the exponential stability of periodic solutions of delay differential equations with large delay. We show that for sufficiently large delay the Floquet spectrum near criticality is characterized by a set of curves, which we call asymptotic continuous spectrum, that is independent on the delay.Comment: postprint versio

    Endocrine disruption in the Scheldt estuary distribution, exposure and effects (ENDIS-RISKS). Final report

    Get PDF
    ENDIS-RISKS is a multidisciplinary, research project conducted by five institutes. This project aimed to assess the distribution, exposure and effects of endocrine disruptors in the Scheldt estuary, with specific attention to invertebrates. The Scheldt estuary is known to be one of the most polluted estuaries in the world. The industrial areas of Ghent and Antwerp are to a large extent responsible for this pollution. To achieve these goals detailed knowledge of the distribution and long-term effects of these substances is needed. This information is crucial for the development of future-oriented policy measures at the national and European level. The project can be divided into four different research phases. In Phase I the occurance and distribution of endocrine disrupting substances in the Scheldt estuary was studied. Water, sediment, suspended solids and biota were sampled 3 times a year for a period of 4 years (2002-2006). In all these matrices, 7 groups of chemicals were analysed: estrogens, pesticides, phthalates, organotins, polyaromatic components (PCBs, PBDEs), polyaromatic hydrocarbons (PAHs) and phenols. All the analyzed chemicals are on the OSPAR list of priority chemicals or are indicated as endocrine disruptors on this list. The different water samples were also tested using in vitro assays to assess their potential to bind to the (human) estrogen and androgen receptor. Phase II evaluated the exposure of biota occuring in the Scheldt estuary to endocrine disrupting substances. Based on the results of the chemical analysis, priority substances were selected. Phase III studied the effects of endocrine disrupting substances occurring in the Scheldt estuary on resident mysid shrimp populations (laboratory and field studies). Substances of concern were selected and tested in the laboratory to evaluate their effects on the estuarine mysid Neomysis integer. In the context of this project, three new assays using invertebrate-specific endpoints were developed to examine the effect of endocrine disrupting chemicals (EDCs) on molting, embryogenesis and vitellogenesis of N. integer. Finally, in Phase IV laboratory and field results were used to perform a preliminary environmental risk assessment of endocrine disruptors in the Scheldt estuary. Samples were collected along the salinity gradiënt of the Scheldt estuary with the RV Belgica. Water samples were taken with Teflon-coated Go-Flo bottles (10L), sediment samples with Van Veen Grab, biota with a hyperbentic sledge, and suspended particulate matter (SPM) was continuously sampled with an Alfa Laval flow-through centrifuge. For the chemical analysis, protocols were developed to analyse estrogens, organotriazine herbicides, organochlorine pesticides, phtalates, organotins, PAHs, PCBs, and PBDEs in the different matrices: i.e. water, sediment, SPM and biota.Experimental studies were performed to analyse growth, molting, embryogenesis and vitellogenesis of N. integer. These studies were needed to develop ecotoxicological assays to evaluate EDCs on these physiological processes. To study growth of N. integer, organisms were individually transferrred in exposure solutions and molts were collected to measure the growth after each molting. To study embryogenesis, embryos were taking out of the marsupium and placed in multiwell plates. Each day survival, developmental stages and hatching was analysed. To study vitellogenesis, vitellin was isolated from eggs with gelfitration and polyclonal antibodies were developed (in rabbits). With the isolated vitellin and the antibodies an enzyme-linked immunosorbent assay (ELISA) was developed. Vitellin was quatified in ovigerous females exposed to test compound in the laboratory and in females collected from the different sampling sites of the Scheldt estuary. In addition to vitellin levels, energy allocation and testosterone metabolism was examined in field collected mysids. Finally, results from population stu

    Surface tension, rheology and hydrophobicity of rhizodeposits and seed mucilage influence soil water retention and hysteresis

    Get PDF
    Aims: Rhizodeposits collected from hydroponic solutions with roots of maize and barley, and seed mucilage washed from chia, were added to soil to measure their impact on water retention and hysteresis in a sandy loam soil at a range of concentrations. We test the hypothesis that the effect of plant exudates and mucilages on hydraulic properties of soils depends on their physicochemical characteristics and origin.Methods: Surface tension and viscosity of the exudate solutions were measured using the Du NoĂŒy ring method and a cone-plate rheometer, respectively. The contact angle of water on exudate treated soil was measured with the sessile drop method. Water retention and hysteresis were measured by equilibrating soil samples, treated with exudates and mucilages at 0.46 and 4.6 mg g−1 concentration, on dialysis tubing filled with polyethylene glycol (PEG) solution of known osmotic potential.Results: Surface tension decreased and viscosity increased with increasing concentration of the exudates and mucilage in solutions. Change in surface tension and viscosity was greatest for chia seed exudate and least for barley root exudate. Contact angle increased with increasing maize root and chia seed exudate concentration in soil, but not barley root. Chia seed mucilage and maize root rhizodeposits enhanced soil water retention and increased hysteresis index, whereas barley root rhizodeposits decreased soil water retention and the hysteresis effect. The impact of exudates and mucilages on soil water retention almost ceased when approaching wilting point at −1500 kPa matric potential.Conclusions: Barley rhizodeposits behaved as surfactants, drying the rhizosphere at smaller suctions. Chia seed mucilage and maize root rhizodeposits behaved as hydrogels that hold more water in the rhizosphere, but with slower rewetting and greater hysteresis
    • 

    corecore