466 research outputs found

    Synthesis and structural characterization of a mimetic membrane-anchored prion protein

    Get PDF
    During pathogenesis of transmissible spongiform encephalopathies (TSEs) an abnormal form (PrPSc) of the host encoded prion protein (PrPC) accumulates in insoluble fibrils and plaques. The two forms of PrP appear to have identical covalent structures, but differ in secondary and tertiary structure. Both PrPC and PrPSc have glycosylphospatidylinositol (GPI) anchors through which the protein is tethered to cell membranes. Membrane attachment has been suggested to play a role in the conversion of PrPC to PrPSc, but the majority of in vitro studies of the function, structure, folding and stability of PrP use recombinant protein lacking the GPI anchor. In order to study the effects of membranes on the structure of PrP, we synthesized a GPI anchor mimetic (GPIm), which we have covalently coupled to a genetically engineered cysteine residue at the C-terminus of recombinant PrP. The lipid anchor places the protein at the same distance from the membrane as does the naturally occurring GPI anchor. We demonstrate that PrP coupled to GPIm (PrP-GPIm) inserts into model lipid membranes and that structural information can be obtained from this membrane-anchored PrP. We show that the structure of PrP-GPIm reconstituted in phosphatidylcholine and raft membranes resembles that of PrP, without a GPI anchor, in solution. The results provide experimental evidence in support of previous suggestions that NMR structures of soluble, anchor-free forms of PrP represent the structure of cellular, membrane-anchored PrP. The availability of a lipid-anchored construct of PrP provides a unique model to investigate the effects of different lipid environments on the structure and conversion mechanisms of PrP

    Seasonal breeding drives the incidence of a chronic bacterial infection in a free-living herbivore population

    Get PDF
    SUMMARY Understanding seasonal changes in age-related incidence of infections can be revealing for disentangling how host heterogeneities affect transmission and how to control the spread of infections between social groups. Seasonal forcing has been well documented in human childhood diseases but the mechanisms responsible for age-related transmission in free-living and socially structured animal populations are still poorly known. Here we studied the seasonal dynamics of Bordetella bronchiseptica in a free-living rabbit population over 5 years and discuss the possible mechanisms of infection. This bacterium has been isolated in livestock and wildlife where it causes respiratory infections that rapidly spread between individuals and persist as subclinical infections. Sera were collected from rabbits sampled monthly and examined using an ELISA. Findings revealed that B. bronchiseptica circulates in the rabbit population with annual prevalence ranging between 88% and 97 %. Both seroprevalence and antibody optical density index exhibited 1-year cycles, indicating that disease outbreaks were seasonal and suggesting that long-lasting antibody protection was transient. Intra-annual dynamics showed a strong seasonal signature associated with the recruitment of naive offspring during the breeding period. Infection appeared to be mainly driven by mother-to-litter contacts rather than by interactions with other members of the community. By age 2 months, 65 % of the kittens were seropositive

    Shower development of particles with momenta from 15 GeV to 150 GeV in the CALICE scintillator-tungsten hadronic calorimeter

    Full text link
    We present a study of showers initiated by electrons, pions, kaons, and protons with momenta from 15 GeV to 150 GeV in the highly granular CALICE scintillator-tungsten analogue hadronic calorimeter. The data were recorded at the CERN Super Proton Synchrotron in 2011. The analysis includes measurements of the calorimeter response to each particle type as well as measurements of the energy resolution and studies of the longitudinal and radial shower development for selected particles. The results are compared to Geant4 simulations (version 9.6.p02). In the study of the energy resolution we include previously published data with beam momenta from 1 GeV to 10 GeV recorded at the CERN Proton Synchrotron in 2010.Comment: 35 pages, 21 figures, 8 table

    The Time Structure of Hadronic Showers in highly granular Calorimeters with Tungsten and Steel Absorbers

    Get PDF
    The intrinsic time structure of hadronic showers influences the timing capability and the required integration time of hadronic calorimeters in particle physics experiments, and depends on the active medium and on the absorber of the calorimeter. With the CALICE T3B experiment, a setup of 15 small plastic scintillator tiles read out with Silicon Photomultipliers, the time structure of showers is measured on a statistical basis with high spatial and temporal resolution in sampling calorimeters with tungsten and steel absorbers. The results are compared to GEANT4 (version 9.4 patch 03) simulations with different hadronic physics models. These comparisons demonstrate the importance of using high precision treatment of low-energy neutrons for tungsten absorbers, while an overall good agreement between data and simulations for all considered models is observed for steel.Comment: 24 pages including author list, 9 figures, published in JINS

    Multivariate Statistical Analyses Demonstrate Unique Host Immune Responses to Single and Dual Lentiviral Infection

    Get PDF
    Feline immunodeficiency virus (FIV) and human immunodeficiency virus (HIV) are recently identified lentiviruses that cause progressive immune decline and ultimately death in infected cats and humans. It is of great interest to understand how to prevent immune system collapse caused by these lentiviruses. We recently described that disease caused by a virulent FIV strain in cats can be attenuated if animals are first infected with a feline immunodeficiency virus derived from a wild cougar. The detailed temporal tracking of cat immunological parameters in response to two viral infections resulted in high-dimensional datasets containing variables that exhibit strong co-variation. Initial analyses of these complex data using univariate statistical techniques did not account for interactions among immunological response variables and therefore potentially obscured significant effects between infection state and immunological parameters.Here, we apply a suite of multivariate statistical tools, including Principal Component Analysis, MANOVA and Linear Discriminant Analysis, to temporal immunological data resulting from FIV superinfection in domestic cats. We investigated the co-variation among immunological responses, the differences in immune parameters among four groups of five cats each (uninfected, single and dual infected animals), and the "immune profiles" that discriminate among them over the first four weeks following superinfection. Dual infected cats mount an immune response by 24 days post superinfection that is characterized by elevated levels of CD8 and CD25 cells and increased expression of IL4 and IFNgamma, and FAS. This profile discriminates dual infected cats from cats infected with FIV alone, which show high IL-10 and lower numbers of CD8 and CD25 cells.Multivariate statistical analyses demonstrate both the dynamic nature of the immune response to FIV single and dual infection and the development of a unique immunological profile in dual infected cats, which are protected from immune decline

    Repurposing a photosynthetic antenna protein as a super-resolution microscopy label

    Get PDF
    Techniques such as Stochastic Optical Reconstruction Microscopy (STORM) and Structured Illumination Microscopy (SIM) have increased the achievable resolution of optical imaging, but few fluorescent proteins are suitable for super-resolution microscopy, particularly in the far-red and near-infrared emission range. Here we demonstrate the applicability of CpcA, a subunit of the photosynthetic antenna complex in cyanobacteria, for STORM and SIM imaging. The periodicity and width of fabricated nanoarrays of CpcA, with a covalently attached phycoerythrobilin (PEB) or phycocyanobilin (PCB) chromophore, matched the lines in reconstructed STORM images. SIM and STORM reconstructions of Escherichia coli cells harbouring CpcA-labelled cytochrome bd 1 ubiquinol oxidase in the cytoplasmic membrane show that CpcA-PEB and CpcA-PCB are suitable for super-resolution imaging in vivo. The stability, ease of production, small size and brightness of CpcA-PEB and CpcA-PCB demonstrate the potential of this largely unexplored protein family as novel probes for super-resolution microscopy

    Development of the interRAI Pressure Ulcer Risk Scale (PURS) for use in long-term care and home care settings

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In long-term care (LTC) homes in the province of Ontario, implementation of the Minimum Data Set (MDS) assessment and The Braden Scale for predicting pressure ulcer risk were occurring simultaneously. The purpose of this study was, using available data sources, to develop a bedside MDS-based scale to identify individuals under care at various levels of risk for developing pressure ulcers in order to facilitate targeting risk factors for prevention.</p> <p>Methods</p> <p>Data for developing the interRAI Pressure Ulcer Risk Scale (interRAI PURS) were available from 2 Ontario sources: three LTC homes with 257 residents assessed during the same time frame with the MDS and Braden Scale for Predicting Pressure Sore Risk, and eighty-nine Ontario LTC homes with 12,896 residents with baseline/reassessment MDS data (median time 91 days), between 2005-2007. All assessments were done by trained clinical staff, and baseline assessments were restricted to those with no recorded pressure ulcer. MDS baseline/reassessment samples used in further testing included 13,062 patients of Ontario Complex Continuing Care Hospitals (CCC) and 73,183 Ontario long-stay home care (HC) clients.</p> <p>Results</p> <p>A data-informed Braden Scale cross-walk scale using MDS items was devised from the 3-facility dataset, and tested in the larger longitudinal LTC homes data for its association with a future new pressure ulcer, giving a c-statistic of 0.676. Informed by this, LTC homes data along with evidence from the clinical literature was used to create an alternate-form 7-item additive scale, the interRAI PURS, with good distributional characteristics and c-statistic of 0.708. Testing of the scale in CCC and HC longitudinal data showed strong association with development of a new pressure ulcer.</p> <p>Conclusions</p> <p>interRAI PURS differentiates risk of developing pressure ulcers among facility-based residents and home care recipients. As an output from an MDS assessment, it eliminates duplicated effort required for separate pressure ulcer risk scoring. Moreover, it can be done manually at the bedside during critical early days in an admission when the full MDS has yet to be completed. It can be calculated with established MDS instruments as well as with the newer interRAI suite instruments designed to follow persons across various care settings (interRAI Long-Term Care Facilities, interRAI Home Care, interRAI Palliative Care).</p
    • 

    corecore