3,805 research outputs found

    Meeting the Changing Need for Herbage Seed Quality Assurance in the 21st Century

    Get PDF
    Quality assurance is a key element in the herbage seed supply chain. The measurement and management of seed quality is discussed in terms of its four main parameters - genetic, physical, vital, and phytosanitary quality - which provide information on the expected performance of herbage seed when sown in the field. During the past century, seed quality management systems have evolved in response to national and regional differences in economic development, crop characteristics, merit testing, and the demands of international trade. The pace of change in the management of seed quality assurance has intensified in developed countries over the past decade or so, driven mainly by the ability to protect intellectual property, the consolidation of seed companies into larger units, and government policy aimed at deregulating the delivery of quality assurance. In developed countries, this has seen the strong private seed sector taking increasing responsibility for seed quality assurance, both economically and legally, together with the emergence of private seed testing laboratories and in-house certification programs. However, developing countries without a strong private seed sector are better served by the more traditional model in which government takes on the role and responsibility for managing seed quality assurance in the public interest. This paper explores recent trends in seed quality management and their strategic implications for different countries now and in the future with particular reference to herbage seed

    Mites on warm-season turfgrasses in Australia: the fairies at the bottom of the garden?

    Get PDF

    Lower entropy bounds and particle number fluctuations in a Fermi sea

    Full text link
    We demonstrate, in an elementary manner, that given a partition of the single particle Hilbert space into orthogonal subspaces, a Fermi sea may be factored into pairs of entangled modes, similar to a BCS state. We derive expressions for the entropy and for the particle number fluctuations of a subspace of a fermi sea, at zero and finite temperatures, and relate these by a lower bound on the entropy. As an application we investigate analytically and numerically these quantities for electrons in the lowest Landau level of a quantum Hall sample.Comment: shorter version, typos fixe

    A novel sputtering technique: Inductively Coupled Impulse Sputtering (ICIS)

    Get PDF
    Sputtering magnetic materials with magnetron based systems has the disadvantage of field quenching and variation of alloy composition with target erosion. The advantage of eliminating magnetic fields in the chamber is that this enables sputtered particles to move along the electric field more uniformly. Inductively coupled impulse sputtering (ICIS) is a form of high power impulse magnetron sputtering (HIPIMS) without a magnetic field where a high density plasma is produced by a high power radio frequency (RF) coil in order to sputter the target and ionise the metal vapour. In this emerging technology, the effects of power and pressure on the ionisation and deposition process are not known. The setup comprises of a 13.56 MHz pulsed RF coil pulsed with a duty cycle of 25 %. A pulsed DC voltage of 1900 V was applied to the cathode to attract Argon ions and initiate sputtering. Optical emission spectra (OES) for Cu and Ti neutrals and ions at constant pressure show a linear intensity increase for peak RF powers of 500 W – 3400 W and a steep drop of intensity for a power of 4500 W. Argon neutrals show a linear increase for powers of 500 W – 2300 W and a saturation of intensity between 2300 W – 4500 W. The influence of pressure on the process was studied at a constant peak RF power of 2300 W. With increasing pressure the ionisation degree increased. The microstructure of the coatings shows globular growth at 2.95×10−2 mbar and large-grain columnar growth at 1.2×10−1 mbar. Bottom coverage of unbiased vias with a width of 0.360 μm and aspect ratio of 2.5:1 increased from 15 % to 20 % for this pressure range. The current work has shown that the concept of combining a RF powered coil with a magnet-free high voltage pulsed DC powered cathode is feasible and produces very stable plasma. The experiments have shown a significant influence of power and pressure on the plasma and coating microstructure

    Nematic suspension of a microporous layered silicate obtained by forceless spontaneous delamination via repulsive osmotic swelling for casting high-barrier all-inorganic films

    Get PDF
    Exploiting the full potential of layered materials for a broad range of applications requires delamination into functional nanosheets. Delamination via repulsive osmotic swelling is driven by thermodynamics and represents the most gentle route to obtain nematic liquid crystals consisting exclusively of single-layer nanosheets. This mechanism was, however, long limited to very few compounds, including 2:1-type clay minerals, layered titanates, or niobates. Despite the great potential of zeolites and their microporous layered counterparts, nanosheet production is challenging and troublesome, and published procedures implied the use of some shearing forces. Here, we present a scalable, eco-friendly, and utter delamination of the microporous layered silicate ilerite into single-layer nanosheets that extends repulsive delamination to the class of layered zeolites. As the sheet diameter is preserved, nematic suspensions with cofacial nanosheets of ≈9000 aspect ratio are obtained that can be cast into oriented films, e.g., for barrier applications

    A large-scale R-matrix calculation for electron-impact excitation of the Ne2+^{2+} O-like ion

    Full text link
    The five JΠ\Pi levels within a np2np^2 or np4np^4 ground state complex provide an excellent testing ground for the comparison of theoretical line ratios with astrophysically observed values, in addition to providing valuable electron temperature and density diagnostics. The low temperature nature of the line ratios ensure that the theoretically derived values are sensitive to the underlying atomic structure and electron-impact excitation rates. Previous R-matrix calculations for the Ne2+^{2+} O-like ion exhibit large spurious structure in the cross sections at higher electron energies, which may affect Maxwellian averaged rates even at low temperatures. Furthermore, there is an absence of comprehensive excitation data between the excited states that may provide newer diagnostics to compliment the more established lines discussed in this paper. To resolve these issues, we present both a small scale 56-level Breit-Pauli (BP) calculation and a large-scale 554 levels R-matrix Intermediate Coupling Frame Transformation (ICFT) calculation that extends the scope and validity of earlier JAJOM calculations both in terms of the atomic structure and scattering cross sections. Our results provide a comprehensive electron-impact excitation data set for all transitions to higher nn shells. The fundamental atomic data for this O-like ion is subsequently used within a collisional radiative framework to provide the line ratios across a range of electron temperatures and densities of interest in astrophysical observations.Comment: 17 pages, 8 figure

    Collisional Ionization Equilibrium for Optically Thin Plasmas. I. Updated Recombination Rate Coefficients for Bare though Sodium-like Ions

    Get PDF
    Reliably interpreting spectra from electron-ionized cosmic plasmas requires accurate ionization balance calculations for the plasma in question. However, much of the atomic data needed for these calculations have not been generated using modern theoretical methods and are often highly suspect. This translates directly into the reliability of the collisional ionization equilibrium (CIE) calculations. We make use of state-of-the-art calculations of dielectronic recombination (DR) rate coefficients for the hydrogenic through Na-like ions of all elements from He up to and including Zn. We also make use of state-of-the-art radiative recombination (RR) rate coefficient calculations for the bare through Na-like ions of all elements from H through to Zn. Here we present improved CIE calculations for temperatures from 10410^4 to 10910^9 K using our data and the recommended electron impact ionization data of \citet{Mazz98a} for elements up to and including Ni and Mazzotta (private communication) for Cu and Zn. DR and RR data for ionization stages that have not been updated are also taken from these two additional sources. We compare our calculated fractional ionic abundances using these data with those presented by Mazzotta et al. for all elements from H to Ni. The differences in peak fractional abundance are up to 60%. We also compare with the fractional ionic abundances for Mg, Si, S, Ar, Ca, Fe, and Ni derived from the modern DR calculations of \citet{Gu03a,Gu04a} for the H-like through Na-like ions, and the RR calculations of \citet{Gu03b} for the bare through F-like ions. These results are in better agreement with our work, with differences in peak fractional abundance of less than 10%.Comment: 83 pages, 38 figures, 41 tables Accepted to ApJ

    Ionization state, excited populations and emission of impurities in dynamic finite density plasmas: I. The generalized collisional-radiative model for light elements

    Get PDF
    The paper presents an integrated view of the population structure and its role in establishing the ionization state of light elements in dynamic, finite density, laboratory and astrophysical plasmas. There are four main issues, the generalized collisional-radiative picture for metastables in dynamic plasmas with Maxwellian free electrons and its particularizing to light elements, the methods of bundling and projection for manipulating the population equations, the systematic production/use of state selective fundamental collision data in the metastable resolved picture to all levels for collisonal-radiative modelling and the delivery of appropriate derived coefficients for experiment analysis. The ions of carbon, oxygen and neon are used in illustration. The practical implementation of the methods described here is part of the ADAS Project

    Testing in the incremental design and development of complex products

    Get PDF
    Testing is an important aspect of design and development which consumes significant time and resource in many companies. However, it has received less research attention than many other activities in product development, and especially, very few publications report empirical studies of engineering testing. Such studies are needed to establish the importance of testing and inform the development of pragmatic support methods. This paper combines insights from literature study with findings from three empirical studies of testing. The case studies concern incrementally developed complex products in the automotive domain. A description of testing practice as observed in these studies is provided, confirming that testing activities are used for multiple purposes depending on the context, and are intertwined with design from start to finish of the development process, not done after it as many models depict. Descriptive process models are developed to indicate some of the key insights, and opportunities for further research are suggested

    Balancing prescription with teacher and pupil agency : spaces for manoeuvre within a pedagogical model for working with adolescent girls

    Get PDF
    This paper explores the possibilities of using a pedagogical model for working with adolescent girls in physical education as a means of balancing the challenge of external prescription from outside the school with teacher and pupil agency. We report data from a study involving four schools in Glasgow. We note that the national curriculum for Scotland, Curriculum for Excellence, is a broad and bold type that provides teachers with ‘spaces for manoeuvre’ in order to shape local curricula that best meet the needs and interests of girls. This is particularly the case in physical education, which in the Basic General Education phase for 12-15 years olds there is no well-established assessment regime. We identify four spaces for manoeuvre for teachers and pupils within an activist model: new forms of communication based on authorising pupil voice; offering choices and opening up learning possibilities; the co-construction of a safe class environment; and opportunities to rethink traditional structures based on the multi-activity curriculum form. We conclude that an activist pedagogical model provided teachers and pupils with spaces to explore alternative practices to traditional forms of physical education
    corecore