
A novel sputtering technique: Inductively Coupled Impulse 
Sputtering (ICIS)

LOCH, Daniel and EHIASARIAN, Arutiun

Available from Sheffield Hallam University Research Archive (SHURA) at:

http://shura.shu.ac.uk/14156/

This document is the author deposited version.  You are advised to consult the 
publisher's version if you wish to cite from it.

Published version

LOCH, Daniel and EHIASARIAN, Arutiun (2012). A novel sputtering technique: 
Inductively Coupled Impulse Sputtering (ICIS). IOP Conference Series: Materials 
Science and Engineering, 39 (012006). 

Repository use policy

Copyright © and Moral Rights for the papers on this site are retained by the 
individual authors and/or other copyright owners. Users may download and/or print 
one copy of any article(s) in SHURA to facilitate their private study or for non-
commercial research. You may not engage in further distribution of the material or 
use it for any profit-making activities or any commercial gain.

Sheffield Hallam University Research Archive
http://shura.shu.ac.uk

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Sheffield Hallam University Research Archive

https://core.ac.uk/display/82898941?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://shura.shu.ac.uk/


This content has been downloaded from IOPscience. Please scroll down to see the full text.

Download details:

IP Address: 143.52.77.244

This content was downloaded on 04/09/2014 at 10:20

Please note that terms and conditions apply.

A novel sputtering technique: Inductively Coupled Impulse Sputtering (ICIS)

View the table of contents for this issue, or go to the journal homepage for more

2012 IOP Conf. Ser.: Mater. Sci. Eng. 39 012006

iopscience.iop.org/page/terms
http://iopscience.iop.org/1757-899X/39/1
http://iopscience.iop.org/1757-899X
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


----- 

Corresponding author. 

E-mail address: daniel.a.loch@student.shu.ac.uk (D Loch) 

 

A novel sputtering technique:  

Inductively Coupled Impulse Sputtering (ICIS) 

D A L Loch, A P Ehiasarian 

HIPIMS Technology Centre, Sheffield Hallam University, Sheffield, UK 

 

Abstract. Sputtering magnetic materials with magnetron based systems has the disadvantage 

of field quenching and variation of alloy composition with target erosion. The advantage of 

eliminating magnetic fields in the chamber is that this enables sputtered particles to move 

along the electric field more uniformly. Inductively coupled impulse sputtering (ICIS) is a 

form of high power impulse magnetron sputtering (HIPIMS) without a magnetic field where a 

high density plasma is produced by a high power radio frequency (RF) coil in order to sputter 

the target and ionise the metal vapour. In this emerging technology, the effects of power and 

pressure on the ionisation and deposition process are not known. The setup comprises of a 

13.56 MHz pulsed RF coil pulsed with a duty cycle of 25 % . A pulsed DC voltage of 1900 V 

was applied to the cathode to attract Argon ions and initiate sputtering. Optical emission 

spectra (OES) for Cu and Ti neutrals and ions at constant pressure show a linear intensity 

increase for peak RF powers of 500 W - 3400 W and a steep drop of intensity for a power of 

4500 W. Argon neutrals show a linear increase for powers of  

500 W - 2300 W and a saturation of intensity between 2300 W - 4500 W. The influence of 

pressure on the process was studied at a constant peak RF power of 2300 W. With increasing 

pressure the ionisation degree increased. The microstructure of the coatings shows globular 

growth at 2.95×10
-2 

mbar and large-grain columnar growth at 1.2×10
-1

 mbar. Bottom coverage 

of unbiased vias with a width of 0.360 µm and aspect ratio of 2.5:1 increased from 15 % to 

20 % for this pressure range. The current work has shown that the concept of combining a RF 

powered coil with a magnet-free high voltage pulsed DC powered cathode is feasible and 

produces very stable plasma. The experiments have shown a significant influence of power and 

pressure on the plasma and coating microstructure. 

Keywords: ICIS, Ionised PVD, Magnet-free sputtering, deposition on high aspect ratio vias 

1. Introduction 
During sputtering charged particles i.e. ions, follow the electric field lines that are created in the 

chamber by the electric potential difference between the plasma bulk and the substrate surface. [1] 

This means that sputtering with a highly ionised metal plasma makes it possible to deposit coatings 

with good bottom coverage within high aspect ratio structures [2 - 4]. 
Conventionally, to achieve the high electron density necessary to ionise the working gas, a 

magnetic field needs to be applied on the target surface. To ionise the metal vapour additionally high 

power is necessary. Especially for sputtering magnetic materials the field is shunted and limits the 

usable target thickness. Furthermore, this additional magnetic field has the disadvantage of disturbing 

the uniform flow along the electric field lines. While this disturbance is advantageous for the initial 
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ionisation of the gas and metal vapour as the collision probability is greatly enhanced, during the 

movement to the substrate the electrons are forced on cycloidical paths along the magnetic field lines 

and are confined near the target thus trapping gas and metal ions. [1] 

Yukimura and Ehiasarian [5] have designed a magnet free experimental apparatus that consists of 2 

electrodes immersed in an 200 kHz RF plasma that is produced by an inductor.  

To extend the work described, we examine the ionisation degree in a plasma generated with a RF 

frequency of 13.56 MHz and a coil positioned within a vacuum chamber. In the current work an radio 

frequency (RF) powered Copper (Cu) coil is assembled in front of the target (Cu or Ti) to sputter and 

ionise the metal vapour. The current flowing through the coil induces a magnetic field that confines 

electrons to the inside of the coil thus enhancing the collision probability[6]. To attract the argon (Ar) 

ions to the target for sputtering, a high voltage pulsed DC is applied to the target. In the current work 

the effect of RF power on ionisation is studied and modelled by optical emission spectroscopy (OES) 

and the bottom coverage of Cu in vias is studied. 

2. Experimental Details 
The experimental ICIS system (schematic in Fig.1) consists of a UHV chamber (Kurt J. Lesker), a  

Hüttinger PFG 5000 RF power supply (13.56 MHz), a Advanced Converters HIPIMS power supply, a 

2-turn 80 mm diameter solid rod copper coil and a magnet free 75 mm diameter cathode. 

The plasma discharge is created within the RF powered coil. When the plasma has ignited, pulsed 

DC power is applied to the cathode. RF and DC power pulses are synchronised by a pulse generator. 

In the current work a pressure - RF-power matrix was used to examine the influences of working 
pressure and RF- power on the discharge while the pulsed DC parameters were kept constant. During 
the experiments the working pressure was varied from 2.14x10-1 - 2.96x10-2 mbar and the RF power 
was varied between 500 W - 4500 W the DC voltage remained constant at 1900 V. The repetition 
frequency was 500 Hz with a pulse width of 500 µs, which relates to a duty cycle of 25%. The 
substrate was silicon oxide (SiO2), an insulator, with vias, the bias voltage was floating. Temperature 
on the substrate at the beginning of the process was between 20 - 28 ºC and during deposition the 
temperature rose by aprox. 5 ºC within one hour. 
 

 

Figure 1. Experimental set up of the ICIS discharge with the assembly of the inductive coil, magnet free cathode 
and optical emission spectroscopy. 

2.1. Plasma and coating characterisation techniques 
Analysis was carried out by Optical Emission Spectroscopy (OES) (Jobin Ivon Triax 320) with quartz 

optical fibre and collimator in vacuo. To compare the ionisation performance of ICIS with the well 

understood conventional rf coil enhanced magnetron sputtering technique, the results of the OES 

measurements were fitted into a model based on magnetron sputtering based on electron ionisation 

collisions.[7] 
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Scanning Electron Microscopy (SEM) (FEI NovaSEM 200) was used to determine the bottom 

coverage, i.e. the ratio of the coating thickness on the bottom and top surfaces of vias. 

2.2. Modelling 
The used model correlates the optical emission of the plasma to the power on the cathode [7], in case 

of this work, it is the power applied to the induction coil. The model explains the connection between 

the intensity (I(λij)) and power (P) for highly ionised magnetron plasma processes. It shows the 

increase in metal ionisation as a function of power. The intensity is expressed by a power law with 

exponent ȕ. ȕ is derived from the slope in a log — log graph. 

The following subchapter will describe the basis of the model  
The intensity of emission is expressed by the density of the components,  ሺ   ሻ   ሺ   ሻ    ∑                

(1), 

where I(λij) is the intensity, c(λij) is the spectral response of the spectrometer, Aij is the radiative 
frequency, n0 is the gas neutral density, ne is the electron density and Ci is the production rate by 
electron collision. The spectral response of the spectrometer (c(λij)), the radiative frequency (Aij) and 
the production rate by electron collisions can be assumed as constant (Kij) with respect to electron 
density.  
For the excitation of Argon (          ) Eq.1 can be written as follows:                   (2) As most parts of the equation are constant       . Further it is assumed 

that C
i 
 is constant with increasing power so that      , where P is the power and ȕ is the slope in a 

log-graph. This concludes that        (3). 

We determine ȕ by taking the logarithm of both sides of the equation are logarithmised to get and 

obtain:    ሺ   ሻ        (4). 

Excitation of Ti
0 
 (           ) is:                    (5). 

Because plasma is considered quasineutral,         and from the definition of sputtering yield it is 

known that             (6). Where ε is a constant and Ȗe is the sputtering coefficient, it can be 

concluded that         . From this it follows that     (  )  (7) and    ሺ    ሻ         (8). 

For the ionisation of Ti (               ), the intensity is                       (9). 

Where                . Thus          and      (  )  (10) which results in    ሺ    ሻ         (11). 

3. Results and modelling 

3.1. Current and voltage 

 

The current and voltage behaviour on the cathode during a pulse can be seen in Fig. 2. The influence 

of the DC voltage on the current can be clearly seen, with the rise in current during the pulse. Hereby 

the target is biased to 1900V. Note that the voltage does not drop to zero as the current is too low to 

discharge the generator over the plasma. 

HIPIMS 2010 and 2011 IOP Publishing

IOP Conf. Series: Materials Science and Engineering 39 (2012) 012006 doi:10.1088/1757-899X/39/1/012006

3



 

 

 

 

 

 

 

Figure 2 Current and voltage over time on the Cu-cathode during a pulse at 1.2x10-1 mbar. The target is biased 
to 1900V. The current induced by the impinging ions is upto 0.3A. 

3.2. Optical Emission 

The OES measurements in fig. 3a and 3b show the intensities of the individual species in the ICIS 
plasma. In both Ti and Cu cases, strong emission from single-charged metal ions is present. Ar and Cu 
neutrals are detected as well. Due to limited availability of spectral lines for metal ions and neutrals in 
the optical spectrum, lines that are visible at all powers were chosen. Emission lines were transitions to 
ground state with similar upper excitation levels that were generally lower than the Ar neutral 
excitation level of 15 eV. Spectra lines data was taken from NIST.[8] 

 
Figure 3a OES measurement of Ti ICIS plasmas at 1.2x10-1 mbar, 2300 W RF power. Lines used for analysis 

have been marked. 
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Figure 3b OES measurement of Cu and Ti ICIS plasmas at 1.2x10-1 mbar, 2300 W RF power. Lines used for 

analysis have been marked. 

3.3. Modelling the influence of power on ionisation 
 

Calculations from the model predict a linear rise of intensity with increasing power in a log-log graph. 

In the case of ICIS of Ti plasma, measurements show that the slope of Ar is 0.61±0.08. As the model 

does not differentiate between sputter elements this means that according to the model the slope of the 

Ti
0
 should be 1.22±0.08 and the slope of Ti

+ 
should be 1.83±0.08. As the slopes of the metal species 

are based on the Ar slope, they all share same error margin.  

Figures 4a-c clearly show that all measured values fit very well into the error margin of the slope of 

the model. The Ti neutrals and ions rise with increasing power, with a sharp drop for very high RF 

power. Ar intensity rises continuously with power. 

The rate of rise of metal ions is faster than that of metal neutrals. Thus the ionisation degree 

increases with increasing power. 

 
Figure 4a Measured and predicted results for the increase of ionisation with increasing power.  
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Figure 4b Measured and predicted results for the increase of ionisation with increasing power 
 
 
 
 
 
 
 

 

Figure 4c Measured and predicted results for the increase of ionisation with increasing power 
 
 

Fig. 5 shows the increase in the ionisation degree as an ion to neutral ratio. For powers above 1000 W 
RF the rise is linear with increasing power. Below 1000 W the power is too low to generate Ti ions. 
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Figure 5 Ion to Neutral ratio for Ti ICIS plasma at 1.2x10-1 mbar 
 
 
Fig.6 shows similar measurements for an ICIS of Cu plasma. When comparing the optical emission 

from ICIS of Ti and Cu plasmas it can be seen that upto a power of 2300 W both show similar 

behaviour for the metal species with a linear increase of ionisation as a function of RF power. For 

higher powers there is a saturation for the Cu metal species. 

When sputtering Ti the intensity of Ar rises continuously with increasing power, while when 
sputtering Cu the intensity of Ar saturates for higher powers.  

Table 1 lists the slopes as predicted by the model for Ti and the slopes of the measured Cu plasma 

species. Cu deviates from the model as the metal slopes are not clearly related to those of the Ar. 

Additionally, the slope for Ar is significantly greater when Cu is used. The reasons behind this need to 

be examined further. 

 
Figure 6 Ar and Cu neutral and Cu ion intensities for an ICIS Cu plasma. The rise in intensity is linear with 

power. Pressue  1.2x10-1 mbar. 
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Table 1 Comparison of the slopes of Ar and Cu plasmas. The rise in intensity is linear with power for Ti. Also 
the Model will need to be adapted to take into account the lower ioniastion potential of metal ions compared to 

argon. 
 

 

 

 

 

 

To get better results for high density plasmas, the model will need to be adapted to take into account 

the lower ionisation potential of metal ions compared to argon. This can be seen in the results for Cu,  

where the measured results do not fit into the model prediction. Cu has a higher sputter rate compared 

to Ti and as such, probably the metal ion density is considerably higher. 

Also due to the possibillity of successive excitations the model results overestimate the presence of 

metal ions. 

3.4. SEM 

The cross sectional (Fig. 6) SEM image of a high aspect ratio via coated with ICIS of Cu shows good 

overall coverage. The deposition process was carried out at the higher end of power and, respectively, 

metal ionisation degree. For this high pressure (1.2*10
-1

 mbar) process the bottom coverage is 21.6 %. 

The deposition rate was ca. 80 nm/h at 2300 W.  

Table 2 compares the bottom coverage between high and low pressure depositions.  A general trend 

was that bottom coverage improved at higher pressures. 

The microstructure was influenced strongly by the pressure as well. Dense columnar structure was 
observed at the higher pressure  (1.2*10-1 mbar) and dense globular growth at the lower pressure of 
2.9*10-2 mbar. The deposition rate is 99-119 nmh-1 for RF-power of 2300 W, average target power of 
67 W and a pressure of 1.2×10-1 mbar. 
 

 

Figure 7 SEM cross section of ICIS Cu coated high aspect ratio vias at 2300 W, 1.2*10-1 mbar. 
 

Ar0 slope: 0.61 Ar0 slope: 1.37 

Ti0 slope: 1.22 Cu0 slope: 1.41 

Ti+ slope: 1.83 Cu+ slope: 1.76 
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Table 2 Bottom coverage of vias obtained at high and low pressure depositions. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4. Conclusion 

Successful experiments were carried out by sputtering Cu and Ti that present ICIS as a feasible 

sputtering technique. Working without magnetic field eliminates the racetrack that is created with 

magnetron sputtering, thus enhancing target utilisation and allowing ions to follow the electric field 

lines without disturbance. 

The measured results of the rate of increase for gas neutrals, metal neutrals and metal ions fit very 

well to the predicted values of the model for magnetron sputtering. Calculations from the model 

confirm the increase of the ionisation degree as a function of power for Ti. Further examination has to 

be done into the sharp drop in intensity for metal neutrals and ions for high RF  

Power and adjustments to the model have to be made to take this and the lower ionisation potential, 

as well as successive exitation into account.These results show that the ionisation mechanisms for 
ICIS are the same, by type as well as quantity, as for RF-enhanced magnetron sputtering, but without 
the influence of the magnetic field of the magnetron.  

Copper deposition on high aspect ratio vias has shown very promising results. The bottom 

coverage in vias with aspect ratio of 4:1 is 21.6 % with dense columnar growth and without bias. 
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Pressure: 1.2 *10-1 mbar 

Height Width 
Top 

thickness 
Bottom 

thickness 

1,40 µm 315 nm 120 nm 18nm 

Ratio: 4:1 
Bottom 

coverage: 
21,6 % 

 
Pressure: 2.96 *10-2 mbar 

495 nm 143 nm 91.8 nm 15.3 nm 

Ratio: 3.5:1 
Bottom 

coverage: 
14,0 % 

240 nm 143 nm 91.8nm 15.3 nm 

Ratio: 1.7:1 
Bottom 

coverage: 
14,0 % 

163 nm 143 nm 91.8 nm 20.4 nm 

Ratio: 1.2:1 
Bottom 

coverage: 
18.70% 
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