11,788 research outputs found

    The use of scents to influence consumers: the sense of using scents to make cents

    Get PDF
    Since the sense of smell cannot be turned off and it prompts immediate, emotional responses, marketers are becoming aware of its usefulness in communicating with consumers. Consequently, over the last few years consumers have been increasingly influenced by ambient scents, which are defined as general odors that do not emanate from a product but are present as part of the retail environment. The goal of this article is to create awareness of the ethical issues in the scent marketing industry. In particular, we illuminate areas of concern regarding the use of scents to persuade, and its potential to make consumers vulnerable to marketing communications. Since this is a new frontier for marketers, we begin with an explanation of what makes the sense of smell different from other senses. We then provide a description of how scents are used in marketing, past research on the power of scents, and the theoretical basis for, and uses of scents to influence consumers. This brings us to the discussion of the ethical considerations regarding the use of this sense. We close with several future research ideas that would provide more evidence of how the sense of smell can, and should be used by marketers

    Domestic Abuse: Testing the RFGV algorithm

    Get PDF

    Redshift Determination and CO Line Excitation Modeling for the Multiply Lensed Galaxy HLSW-01

    Get PDF
    We report on the redshift measurement and CO line excitation of HERMES J105751.1+573027 (HLSW-01), a strongly lensed submillimeter galaxy discovered in Herschel/SPIRE observations as part of the Herschel Multi-tiered Extragalactic Survey (HerMES). HLSW-01 is an ultra-luminous galaxy with an intrinsic far-infrared luminosity of L _(FIR) = 1.4 × 10^(13) L _⊙, and is lensed by a massive group of galaxies into at least four images with a total magnification of μ = 10.9 ± 0.7. With the 100 GHz instantaneous bandwidth of the Z-Spec instrument on the Caltech Submillimeter Observatory, we robustly identify a redshift of z = 2.958 ± 0.007 for this source, using the simultaneous detection of four CO emission lines (J = 7 → 6, J = 8 → 7, J = 9 → 8, and J = 10 → 9). Combining the measured line fluxes for these high-J transitions with the J = 1 → 0, J = 3 → 2, and J = 5 → 4 line fluxes measured with the Green Bank Telescope, the Combined Array for Research in Millimeter Astronomy, and the Plateau de Bure Interferometer, respectively, we model the physical properties of the molecular gas in this galaxy. We find that the full CO spectral line energy distribution is described well by warm, moderate-density gas with T _(kin) = 86-235 K and n_H_2 = (1.1-3.5)x10^3 cm^(–3). However, it is possible that the highest-J transitions are tracing a small fraction of very dense gas in molecular cloud cores, and two-component models that include a warm/dense molecular gas phase with T _(kin) ~ 200 K, n_H_2 ~ 10^5 cm^(–3) are also consistent with these data. Higher signal-to-noise measurements of the J _(up) ≥ 7 transitions with high spectral resolution, combined with high spatial resolution CO maps, are needed to improve our understanding of the gas excitation, morphology, and dynamics of this interesting high-redshift galaxy

    Cell-Wall Autohydrolysis in Isolated Endosperms of Lettuce (Lactuca sativa L.)

    Full text link

    Synthesis, structure, and reactivity of zwitterionic divalent rare-earth metal silanides

    Get PDF
    The synthesis and structures of the first zwitterionic divalent rare-earth metal silanides of the formula [Si(SiMe2OMe)3-κ3]2M (M-3), where M = Eu, Yb, and Sm, are reported. M-3 compounds feature spirocyclic bicyclooctane structures in which the central rare-earth metal ions are being octahedrally coordinated by six methoxy groups. The reaction of Yb-3 with BPh3 and W(CO)6 respectively generated the trinuclear zwitterions [Ph3BSi(SiMe2OMe)3-κ3]2Yb (Yb-4) and [(CO)5WSi(SiMe2OMe)3-κ3]2Yb (Yb-5) in good yield.PostprintPeer reviewe

    Vaccine-preventable haemophilus influenza type B disease burden and cost-effectiveness of infant vaccination in Indonesia.

    Get PDF
    BACKGROUND: Most of Asia, including Indonesia, does not use Haemophilus influenzae type b (Hib) conjugate vaccines. We estimated total vaccine-preventable disease burden and the cost-effectiveness of Hib conjugate vaccine in Indonesia. METHODS: Hib pneumonia and meningitis incidences for children with access to health care were derived from a randomized vaccine probe study on Lombok Island, Indonesia during 1998-2002. Incidences were adjusted for limited access to care. Health system and patient out-of-pocket treatment cost data were collected concurrent with the probe study. For Hib vaccine in monovalent and combined (with DTP-HepB) presentations, we used 2007 UNICEF vaccine prices of US3.30and3.30 and 3.75 per dose. RESULTS: For the 2007 Indonesian birth cohort, Hib vaccine would prevent meningitis in 1 of every 179 children, pneumonia in 1 of every 18 children, and 4.9% of mortality among those younger than 5 years. The total incremental societal costs of introducing Hib vaccine in monovalent and pentavalent presentations were, respectively, US11.74and11.74 and 8.93 per child vaccinated. Annual discounted treatment costs averted amounted to 20% of pentavalent vaccine costs. For the pentavalent vaccine, the incremental costs per discounted death and disability adjusted life-year averted amounted to US3102and3102 and 74, respectively, versus 4438and4438 and 102 for monovalent vaccine. CONCLUSIONS: Routine infant Hib vaccination would prevent a large burden of pediatric illness and death in Indonesia. Even without external funding support, Hib vaccine will be a highly cost-effective intervention in either a monovalent or pentavalent presentation based on commonly used benchmarks

    Applying machine learning to the problem of choosing a heuristic to select the variable ordering for cylindrical algebraic decomposition

    Get PDF
    Cylindrical algebraic decomposition(CAD) is a key tool in computational algebraic geometry, particularly for quantifier elimination over real-closed fields. When using CAD, there is often a choice for the ordering placed on the variables. This can be important, with some problems infeasible with one variable ordering but easy with another. Machine learning is the process of fitting a computer model to a complex function based on properties learned from measured data. In this paper we use machine learning (specifically a support vector machine) to select between heuristics for choosing a variable ordering, outperforming each of the separate heuristics.Comment: 16 page

    The Detector System for the Stratospheric Kinetic Inductance Polarimeter (SKIP)

    Get PDF
    The Stratospheric Kinetic Inductance Polarimeter (SKIP) is a proposed balloon-borne experiment designed to study the cosmic microwave background, the cosmic infrared background and Galactic dust emission by observing 1133 square degrees of sky in the Northern Hemisphere with launches from Kiruna, Sweden. The instrument contains 2317 single-polarization, horn-coupled, aluminum lumped-element kinetic inductance detectors (LEKID). The LEKIDs will be maintained at 100 mK with an adiabatic demagnetization refrigerator. The polarimeter operates in two configurations, one sensitive to a spectral band centered on 150 GHz and the other sensitive to 260 and 350 GHz bands. The detector readout system is based on the ROACH-1 board, and the detectors will be biased below 300 MHz. The detector array is fed by an F/2.4 crossed-Dragone telescope with a 500 mm aperture yielding a 15 arcmin FWHM beam at 150 GHz. To minimize detector loading and maximize sensitivity, the entire optical system will be cooled to 1 K. Linearly polarized sky signals will be modulated with a metal-mesh half-wave plate that is mounted at the telescope aperture and rotated by a superconducting magnetic bearing. The observation program consists of at least two, five-day flights beginning with the 150 GHz observations.Comment: J Low Temp Phys DOI 10.1007/s10909-013-1014-3 The final publication is available at link.springer.co

    A LEKID-based CMB instrument design for large-scale observations in Greenland

    Get PDF
    We present the results of a feasibility study, which examined deployment of a ground-based millimeter-wave polarimeter, tailored for observing the cosmic microwave background (CMB), to Isi Station in Greenland. The instrument for this study is based on lumped-element kinetic inductance detectors (LEKIDs) and an F/2.4 catoptric, crossed-Dragone telescope with a 500 mm aperture. The telescope is mounted inside the receiver and cooled to <4<\,4 K by a closed-cycle 4^4He refrigerator to reduce background loading on the detectors. Linearly polarized signals from the sky are modulated with a metal-mesh half-wave plate that is rotated at the aperture stop of the telescope with a hollow-shaft motor based on a superconducting magnetic bearing. The modular detector array design includes at least 2300 LEKIDs, and it can be configured for spectral bands centered on 150~GHz or greater. Our study considered configurations for observing in spectral bands centered on 150, 210 and 267~GHz. The entire polarimeter is mounted on a commercial precision rotary air bearing, which allows fast azimuth scan speeds with negligible vibration and mechanical wear over time. A slip ring provides power to the instrument, enabling circular scans (360 degrees of continuous rotation). This mount, when combined with sky rotation and the latitude of the observation site, produces a hypotrochoid scan pattern, which yields excellent cross-linking and enables 34\% of the sky to be observed using a range of constant elevation scans. This scan pattern and sky coverage combined with the beam size (15~arcmin at 150~GHz) makes the instrument sensitive to 5<<10005 < \ell < 1000 in the angular power spectra

    Hydrothermal sensitivities of seed populations underlie fluctuations of dormancy states in an annual plant community

    Get PDF
    Plant germination ecology involves continuous interactions between changing environmental conditions and the sensitivity of seed populations to respond to those conditions at a given time. Ecologically meaningful parameters characterizing germination capacity (or dormancy) are needed to advance our understanding of the evolution of germination strategies within plant communities. The germination traits commonly examined (e.g., maximum germination percentage under optimal conditions) may not adequately reflect the critical ecological differences in germination behavior across species, communities, and seasons. In particular, most seeds exhibit primary dormancy at dispersal that is alleviated by exposure to dry after-ripening or to hydrated chilling to enable germination in a subsequent favorable season. Population-based threshold (PBT) models of seed germination enable quantification of patterns of germination timing using parameters based on mechanistic assumptions about the underlying germination physiology. We applied the hydrothermal time (HTT) model, a type of PBT model that integrates environmental temperature and water availability, to study germination physiology in a guild of coexisting desert annual species whose seeds were after-ripened by dry storage under different conditions. We show that HTT assumptions are valid for describing germination physiology in these species, including loss of dormancy during after-ripening. Key HTT parameters, the hydrothermal time constant (θHT ) and base water potential distribution among seeds (Ψb (g)), were effective in describing changes in dormancy states and in clustering species exhibiting similar germination syndromes. θHT is an inherent species-specific trait relating to timing of germination that correlates well with long-term field germination fraction, while Ψb (g) shifts with depth of dormancy in response to after-ripening and seasonal environmental variation. Predictions based on variation among coexisting species in θHT and Ψb (g) in laboratory germination tests matched well with 25-yr observations of germination dates and fractions for the same species in natural field conditions. Seed dormancy and germination strategies, which are significant contributors to long-term species demographics under natural conditions, can be represented by readily measurable functional traits underlying variation in germination phenologies.This item from the UA Faculty Publications collection is made available by the University of Arizona with support from the University of Arizona Libraries. If you have questions, please contact us at [email protected]
    corecore