87 research outputs found
Weighted Banach spaces of harmonic functions
âThe final publication is available at Springer via http://dx.doi.org/10.1007/s13398-012-0109-z."We study Banach spaces of harmonic functions on open sets of or endowed with weighted supremum norms. We investigate the harmonic associated weight defined naturally as the analogue of the holomorphic associated weight introduced by Bierstedt, Bonet, and Taskinen and we compare them. We study composition operators with holomorphic symbol between weighted Banach spaces of pluriharmonic functions characterizing the continuity, the compactness and the essential norm of composition operators among these spaces in terms of associated weights.The research of the first author was partially supported by MEC and FEDER Project MTM2010-15200 and by GV project ACOMP/2012/090.Jorda Mora, E.; Zarco GarcĂa, AM. (2014). Weighted Banach spaces of harmonic functions. Revista de la Real Academia de Ciencias Exactas, Fisicas y Naturales. Serie A. Matematicas. 108(2):405-418. https://doi.org/10.1007/s13398-012-0109-zS4054181082Axler, S., Bourdon, P., Ramey, W.: Harmonic Function Theory, 2nd edn. Springer, Berlin (2001)Bierstedt, K.D., Bonet, J., Galbis, A.: Weighted spaces of holomorphic functions on balanced domains. Mich. Math. J. 40(2), 271â297 (1993)Bierstedt, K.D., Bonet, J., Taskinen, J.: Associated weights and spaces of holomorphic functions. Stud. Math. 127(2), 137â168 (1998)Bierstedt, K.D., Summers, W.H.: Biduals of weighted Banach spaces of analytic functions. J. Aust. Math. Soc. Ser. A 54(1), 70â79 (1993)Bonet, J., DomaĆski, P., Lindström, M.: Essential norm and weak compactness of composition operators on weighted Banach spaces of analytic functions. Can. Math. Bull. 42(2), 139â148 (1999)Bonet, J., DomaĆski, P., Lindström, M.: Weakly compact composition operators on weighted vector-valued Banach spaces of analytic mappings. Ann. Acad. Sci. Fenn. Math. Ser. A I 26, 233â248 (2001)Bonet, J., DomaĆski, P., Lindström, M., Taskinen, J.: Composition operators between weighted Banach spaces of analytic functions. J. Aust. Math. Soc. Ser. A 64, 101â118 (1998)Bonet, J., Friz, M., JordĂĄ, E.: Composition operators between weighted inductive limits of spaces of holomorphic functions. Publ. Math. Debr. Ser. A 67, 333â348 (2005)Boyd, C., Rueda, P.: The v-boundary of weighted spaces of holomorphic functions. Ann. Acad. Sci. Fenn. Math. 30, 337â352 (2005)Boyd, C., Rueda, P.: Complete weights and v-peak points of spaces of weighted holomorphic functions. Isr. J. Math. 155, 57â80 (2006)Boyd, C., Rueda, P.: Isometries of weighted spaces of harmonic functions. Potential Anal. 29(1), 37â48 (2008)Carando, D., Sevilla-Peris, P.: Spectra of weighted algebras of holomorphic functions. Math. Z. 263, 887â902 (2009)Contreras, M.D., HernĂĄndez-DĂaz, G.: Weighted composition operators in weighted Banach spaces of analytic functions. J. Aust. Math. Soc. Ser. A 69(1), 41â60 (2000)GarcĂa, D., Maestre, M., Rueda, P.: Weighted spaces of holomorphic functions on Banach spaces. Stud. Math. 138(1), 1â24 (2000)GarcĂa, D., Maestre, M., Sevilla-Peris, P.: Composition operators between weighted spaces of holomorphic functions on Banach spaces. Ann. Acad. Sci. Fenn. Math. 29, 81â98 (2004)Gunning, R., Rossi, H.: Analytic Functions of Several Complex Variables. AMS Chelsea Publishing, Providence (2009)Hoffman, K.: Banach Spaces of Analytic Functions. Prentice-Hall, Englewood Cliffs (1962)Krantz, S.G.: Function Theory of Several Complex Variables. AMS, Providence (2001)Lusky, W.: On weighted spaces of harmonic and holomorphic functions. J. Lond. Math. Soc. 51, 309â320 (1995)Lusky, W.: On the isomorphism classes of weighted spaces of harmonic and holomorphic functions. Stud. Math. 175(1), 19â45 (2006)Meise, R., Vogt, D.: Introduction to Functional Analysis. Oxford University Press, Oxford (1997)Montes-RodrĂguez, A.: Weight composition operators on weighted Banach spaces of analytic functions. J. Lond. Math. Soc. 61(2), 872â884 (2000)Ng, K.F.: On a theorem of Diximier. Math. Scand. 29, 279â280 (1972)Rudin, W.: Real and Complex Analysis. MacGraw-Hill, NY (1970)Rudin, W.: Functional analysis. In: International series in pure and applied mathematics, 2nd edn. McGraw-Hill, Inc., New York (1991)Shields, A.L., Williams, D.L.: Bounded projections, duality and multipliers in spaces of harmonic functions. J. Reine Angew. Math. 299(300), 256â279 (1978)Shields, A.L., Williams, D.L.: Bounded projections and the growth of harmonic conjugates in the unit disc. Mich. Math. J. 29, 3â25 (1982)Zheng, L.: The essential norms and spectra of composition operators on . Pac. J. Math. 203(2), 503â510 (2002
Classical operators on the Hörmander algebras
We study the integration operator, the differentiation operator
and more general differential operators on radial FrŽechet or (LB) Hšormander
algebras of entire functions. We analyze when these operators are power
bounded, hypercyclic and (uniformly) mean ergodic.This research was partially supported by MEC and FEDER Project MTM2010-15200. The research of M. J. Beltran was also supported by grant F.P.U. AP2008-00604 and Programa de Apoyo a la Investigacion y Desarrollo de la UPV PAID-06-12, and the research of J. Bonet and C. Fernandez, by GVA under Project PROMETEOII/2013/013.Beltrån Meneu, MJ.; Bonet Solves, JA.; Fernåndez, C. (2015). Classical operators on the Hörmander algebras. Discrete and Continuous Dynamical Systems - Series A. 35(2):637-652. https://doi.org/10.3934/dcds.2015.35.637S63765235
A note on completeness of weighted normed spaces of analytic functions
[EN] Given a non-negative weight v, not necessarily bounded or strictly positive, defined on a domain G in the complex plane, we consider the weighted space H-v(infinity) (G)of all holomorphic functions on G such that the product v vertical bar f vertical bar is bounded in G and study the question of when such a space is complete under the canonical sup-seminorm. We obtain both some necessary and some sufficient conditions in terms of the weight v, exhibit several relevant examples, and characterize completeness in the case of spaces with radial weights on balanced domains.The first author was partially supported by MTM2013-43540-P and MTM2016-76647-P by MINECO/FEDER-EU and GVA Prometeo II/2013/013. The second author was partially supported by the MINECO/FEDER-EU Grant MTM2015-65792-P. Both authors were partially supported by Thematic Research Network MTM2015-69323-REDT, MINECO, Spain.Bonet Solves, JA.; Vukotic, D. (2017). A note on completeness of weighted normed spaces of analytic functions. Results in Mathematics. 72(1-2):263-279. https://doi.org/10.1007/s00025-017-0696-2S263279721-2Arcozzi, N., Björn, A.: Dominating sets for analytic and harmonic functions and completeness of weighted Bergman spaces. Math. Proc. R. Ir. Acad. 102A, 175â192 (2002)Berenstein, C.A., Gay, R.: Complex Variables, An Introduction. Springer, New York (1991)Bierstedt, K.D., Bonet, J., Galbis, A.: Weighted spaces of holomorphic functions on bounded domains. Mich. Math. J. 40, 271â297 (1993)Bierstedt, K.D., Bonet, J., Taskinen, J.: Associated weights and spaces of holomorphic functions. Stud. Math. 127, 137â168 (1998)Björn, A.: Removable singularities for weighted Bergman spaces. Czechoslov. Math. J. 56, 179â227 (2006)Bonet, J., DomaĆski, P., Lindström, M.: Essential norm and weak compactness of composition operators on weighted Banach spaces of analytic functions. Can. Math. Bull. 42(2), 139â148 (1999)Bonet, J., Vogt, D.: Weighted spaces of holomorphic functions and sequence spaces. Note Mat. 17, 87â97 (1997)Conway, J.B.: Functions of One Complex Variable, Second Edition, Graduate Texts in Mathematics, vol. 11. Springer, New York (1978)Gaier, D.: Lectures on Complex Approximation. BirkhĂ€user, Boston (1987)Grosse-Erdmann, K.-G.: A weak criterion for vector-valued holomorphic functions. Math. Proc. Camb. Philos. Soc. 136, 399â411 (2004)Hörmander, L.: An Introduction to Complex Analysis in Several Variables. North-Holland, Amsterdam (1979)HorvĂĄth, J.: Topological Vector Spaces and Distributions. Addison-Wesley, Reading (1966)Lusky, W.: On weighted spaces of harmonic and holomorphic functions. J. Lond. Math. Soc. 51, 309â320 (1995)Lusky, W.: On the isomorphism classes of weighted spaces of harmonic and holomorphic functions. Stud. Math. 175, 19â45 (2006)Nakazi, T.: Weighted Bloch spaces which are Banach spaces. Rend. Circ. Mat. Palermo 62, 427â440 (2013)Shields, A.L., Williams, D.L.: Bounded projections, duality and multipliers in spaces of analytic functions. Trans. Am. Math. Soc. 162, 287â302 (1971
Superposition operators between weighted Banach spaces of analytic functions of controlled growth
The final publication is available at Springer via: http://dx.doi.org/10.1007/s00605-012-0441-6[EN] We characterize the entire functions which transform a weighted Banach space of holomorphic functions on the disc of type Hâ into another such space by superposition. We also show that all the superposition operators induced by such entire functions map bounded sets into bounded sets and are continuous. Superposition operators that map bounded sets into relatively compact sets are also considered. © 2012 Springer-Verlag Wien.The research of Bonet was partially supported by MICINN and FEDER Project MTM2010-15200, by GV project Prometeo/2008/101, and by ACOMP/2012/090. The research of Vukotic was partially supported by MICINN grant MTM2009-14694-C02-01, Spain and by the European ESF Network HCAA ("Harmonic and Complex Analysis and Its Applications").Bonet Solves, JA.; VukotiÄ, D. (2013). Superposition operators between weighted Banach spaces of analytic functions of controlled growth. Monatshefte fĂŒr Mathematik. 170(3-4):311-323. https://doi.org/10.1007/s00605-012-0441-6S3113231703-4Ălvarez, V., MĂĄrquez, M.A., VukotiÄ, D.: Superposition operators between the Bloch space and Bergman spaces. Ark. Mat. 42, 205â216 (2004)Appell, J., Zabrejko, P.P.: Nonlinear Superposition Operators, Cambridge Tracts in Mathematics 95. Cambridge University Press, London (1990)Appell, J., Zabrejko, P.P.: Remarks on the superposition operator problem in various function spaces. Complex Var. Elliptic Equ. 55(8â10), 727â737 (2010)Bierstedt, K.D., Bonet, J., Galbis, A.: Weighted spaces of holomorphic functions on bounded domains. Michigan Math. J. 40, 271â297 (1993)Bierstedt, K.D., Bonet, J., Taskinen, J.: Associated weights and spaces of holomorphic functions. Studia Math. 127, 137â168 (1998)Bonet, J., DomaĆski, P., Lindström, M.: Essential norm and weak compactness of composition operators on weighted Banach spaces of analytic functions. Can. Math. Bull. 42(2), 139â148 (1999)Bonet, J., DomaĆski, P., Lindström, M., Taskinen, J.: Composition operators between weighted Banach spaces of analytic functions. J. Aust. Math. Soc. (Ser. A) 64, 101â118 (1998)Boyd, C., Rueda, P.: Holomorphic superposition operators between Banach function spaces. Preprint (2011)Boyd, C., Rueda, P.: Superposition operators between weighted spaces of analytic functions. Preprint (2011)Buckley, S.M., FernĂĄndez, J.L., VukotiÄ, D.: Superposition operators on Dirichlet type spaces. In: Papers on Analysis: A Volume dedicaed to Olli Martio on the occasion of his 60th birthday. Rep. Univ. JyvĂ€skyla Dept. Math. Stat, vol. 83, pp. 41â61. Univ. JyvĂ€skyla, JyvĂ€skyla (2001)Buckley, S.M., VukotiÄ, D.: Univalent interpolation in Besov spaces and superposition into Bergman spaces. Potential Anal. 29(1), 1â16 (2008)CĂĄmera, G.A.: Nonlinear superposition on spaces of analytic functions. In: Harmonic Analysis and Operator Theory (CarĂĄcas, 1994), Contemp. Math, vol. 189, pp. 103â116. Am. Math. Soc, Providence (1995)CĂĄmera, G.A., GimĂ©nez, J.: The nonlinear superposition operators acting on Bergman spaces. Compositio Math. 93, 23â35 (1994)Castillo, R.E., Ramos FernĂĄndez, J.C., Salazar, M.: Bounded superposition operators between Bloch-Orlicz and -Bloch spaces. Appl. Math. Comp. 218, 3441â3450 (2011)Dineen, S.: Complex Analysis in Locally Convex Spaces, vol. 57. North-Holland Math. Studies, Amsterdam (1981)Girela, D., MĂĄrquez, M.A.: Superposition operators between spaces and Hardy spaces. J. Math. Anal. Appl. 364, 463â472 (2010)Grosse-Erdmann, K.-G.: A weak criterion for vector-valued holomorphic functions. Math. Proc. Camb. Publ. Soc. 136, 399â41 (2004)Harutyunyan, A., Lusky, W.: On the boundedness of the differentiation operator between weighted spaces of holomorphic functions. Studia Math. 184, 233â247 (2008)Langenbruch, M.: Continuation of Gevrey regularity for solutions of partial differential operators. In: Functional Analysis (Trier, 1994), pp. 249â280. de Gruyter, Berlin (1996)Levin, B.Ya.: Lectures on Entire Functions. Translations of Mathematical Monographs, vol. 150, Amer. Math. Soc., Providence (1996).Lusky, W.: On weighted spaces of harmonic and holomorphic functions. J. Lond. Math. Soc. 51, 309â320 (1995)Lusky, W.: On the isomorphism classes of weighted spaces of harmonic and holomorphic functions. Studia Math. 175, 19â45 (2006)Pommerenke, Ch.: Boundary Behaviour of Conformal Maps. Springer, Berlin (1992)Ramos FernĂĄndez, J.C.: Bounded superposition operators between weighted Banach spaces of analytic functions. Preprint, Available from http://arxiv.org/abs/1203.5857Shields, A.L., Williams, D.L.: Bounded projections, duality and multipliers in spaces of analytic functions. Trans. Am. Math. Soc. 162, 287â302 (1971)VukotiÄ, D.: Integrability, growth of conformal maps, and superposition operators, Technical Report 10. Aristotle University of Thessaloniki, Department of Mathematics (2004)Xiong, C.: Superposition operators between spaces and Bloch-type spaces. Complex Var. Theory Appl. 50, 935â938 (2005)Xu, W.: Superposition operators on Bloch-type spaces. Comput. Methods Funct. Theory 7, 501â507 (2007)Zhu, K.: Operator Theory in Function Spaces, 2nd edn. Am. Math. Soc., Providence (2007
Recommended from our members
Duality and distance formulas in spaces defined by means of oscillation
For the classical space of functions with bounded mean oscillation, it is well known that VMOââ=BMOVMOââ=BMO and there are many characterizations of the distance from a function f in BMOBMO to VMOVMO. When considering the Bloch space, results in the same vein are available with respect to the little Bloch space. In this paper such duality results and distance formulas are obtained by pure functional analysis. Applications include general Möbius invariant spaces such as QK-spaces, weighted spaces, LipschitzâHölder spaces and rectangular BMOBMO of several variables
On realcompact topological vector spaces
[EN] This survey paper collects some of older and quite new concepts and results from descriptive set topology applied to study certain infinite-dimensional topological vector spaces appearing in Functional Analysis, including Frechet spaces, (L F)-spaces, and their duals, (D F)-spaces and spaces of continuous real-valued functions C(X) on a completely regular Hausdorff space X. Especially (L F)-spaces and their duals arise in many fields of Functional Analysis and its applications, for example in Distributions Theory, Differential Equations and Complex Analysis. The concept of a realcompact topological space, although originally introduced and studied in General Topology, has been also studied because of very concrete applications in Linear Functional Analysis.The research for the first named author was (partially) supported by Ministry of Science and Higher Education, Poland, Grant no. NN201 2740 33 and for the both authors by the project MTM2008-01502 of the Spanish Ministry of Science and Innovation.Kakol, JM.; LĂłpez Pellicer, M. (2011). On realcompact topological vector spaces. Revista de la Real Academia de Ciencias Exactas, Fisicas y Naturales. Serie A. Matematicas. 105(1):39-70. https://doi.org/10.1007/s13398-011-0003-0S39701051Argyros S., Mercourakis S.: On weakly Lindelöf Banach spaces. Rocky Mountain J. Math. 23(2), 395â446 (1993). doi: 10.1216/rmjm/1181072569Arkhangelâskii, A. V.: Topological Function Spaces, Mathematics and its Applications, vol. 78, Kluwer, Dordrecht (1992)Batt J., Hiermeyer W.: On compactness in L p (ÎŒ, X) in the weak topology and in the topology Ï(L p (ÎŒ, X), L p (ÎŒ,XâČ)). Math. Z. 182, 409â423 (1983)Baumgartner J.E., van Douwen E.K.: Strong realcompactness and weakly measurable cardinals. Topol. Appl. 35, 239â251 (1990). doi: 10.1016/0166-8641(90)90109-FBierstedt K.D., Bonet J.: Stefan Heinrichâs density condition for FrĂ©chet spaces and the characterization of the distinguished Köthe echelon spaces. Math. Nachr. 35, 149â180 (1988)Cascales B.: On K-analytic locally convex spaces. Arch. Math. 49, 232â244 (1987)Cascales B., Ka̧kol J., Saxon S.A.: Weight of precompact subsets and tightness. J. Math. Anal. Appl. 269, 500â518 (2002). doi: 10.1016/S0022-247X(02)00032-XCascales B., Ka̧kol J., Saxon S.A.: Metrizability vs. FrĂ©chetâUrysohn property. Proc. Am. Math. Soc. 131, 3623â3631 (2003)Cascales B., Namioka I., Orihuela J.: The Lindelöf property in Banach spaces. Stud. Math. 154, 165â192 (2003). doi: 10.4064/sm154-2-4Cascales B., Oncina L.: Compactoid filters and USCO maps. J. Math. Anal. Appl. 282, 826â843 (2003). doi: 10.1016/S0022-247X(03)00280-4Cascales B., Orihuela J.: On compactness in locally convex spaces, Math. Z. 195(3), 365â381 (1987). doi: 10.1007/BF01161762Cascales B., Orihuela J.: On pointwise and weak compactness in spaces of continuous functions. Bull. Soc. Math. Belg. Ser. B 40(2), 331â352 (1988) Journal continued as Bull. Belg. Math. Soc. Simon StevinDiestel J.: is weakly compactly generated if X is. Proc. Am. Math. Soc. 48(2), 508â510 (1975). doi: 10.2307/2040292van Douwen E.K.: Prime mappings, number of factors and binary operations. Dissertationes Math. (Rozprawy Mat.) 199, 35 (1981)Drewnowski L.: Resolutions of topological linear spaces and continuity of linear maps. J. Math. Anal. Appl. 335(2), 1177â1195 (2007). doi: 10.1016/j.jmaa.2007.02.032Engelking R.: General Topology. Heldermann Verlag, Lemgo (1989)Fabian, M., Habala, P., HĂĄjek, P., Montesinos, V., Pelant, J., Zizler, V.: Functional Analysis and Infinite-Dimensional Geometry. Canadian Mathematical Society. Springer, Berlin (2001)Ferrando J.C.: A weakly analytic space which is not K-analytic. Bull. Aust. Math. Soc. 79(1), 31â35 (2009). doi: 10.1017/S0004972708000968Ferrando J.C.: Some characterization for Ï
X to be Lindelöf ÎŁ or K-analytic in term of C p (X). Topol. Appl. 156(4), 823â830 (2009). doi: 10.1016/j.topol.2008.10.016Ferrando J.C., Ka̧kol J.: A note on spaces C p (X) K-analytic-framed in . Bull. Aust. Math. Soc. 78, 141â146 (2008)Ferrando J.C., Ka̧kol J., LĂłpez-Pellicer M.: Bounded tightness conditions and spaces C(X). J. Math. Anal. Appl. 297, 518â526 (2004)Ferrando J.C., Ka̧kol J., LĂłpez-Pellicer M.: A characterization of trans-separable spaces. Bull. Belg. Math. Soc. Simon Stevin 14, 493â498 (2007)Ferrando, J.C., Ka̧kol, J., LĂłpez-Pellicer, M.: Metrizability of precompact sets: an elementary proof. Rev. R. Acad. Cienc. Exactas Fis. Nat. Ser. A. Mat. RACSAM 99(2), 135â142 (2005). http://www.rac.es/ficheros/doc/00173.pdfFerrando J.C., Ka̧kol J., LĂłpez-Pellicer M., Saxon S.A.: Tightness and distinguished FrĂ©chet spaces. J. Math. Anal. Appl. 324, 862â881 (2006). doi: 10.1016/j.jmaa.2005.12.059Ferrando J.C., Ka̧kol J., LĂłpez-Pellicer M., Saxon S.A.: Quasi-Suslin weak duals. J. Math. Anal. Appl. 339(2), 1253â1263 (2008). doi: 10.1016/j.jmaa.2007.07.081Floret, K.: Weakly compact sets. Lecture Notes in Mathematics, vol. 801, Springer, Berlin (1980)Gillman L., Henriksen M.: Rings of continuous functions in which every finitely generated ideal is principial. Trans. Am. Math. Soc. 82, 366â391 (1956). doi: 10.2307/1993054Gillman L., Jerison M.: Rings of Continuous Functions. Van Nostrand Reinhold Company, New York (1960)Grothendieck A.: Sur les applications linĂ©aires faiblement compactes dâespaces du type C(K). Can. J. Math. 5, 129â173 (1953)Gullick D., Schmets J.: Separability and semi-norm separability for spaces of bounded continuous functions. Bull. R. Sci. Lige 41, 254â260 (1972)Hager A.W.: Some nearly fine uniform spaces. Proc. Lond. Math. Soc. 28, 517â546 (1974). doi: 10.1112/plms/s3-28.3.517Howes N.R.: On completeness. Pacific J. Math. 38, 431â440 (1971)Isbell, J.R.: Uniform spaces. In: Mathematical Surveys 12, American Mathematical Society, Providence (1964)Ka̧kol J., LĂłpez-Pellicer M.: Compact coverings for Baire locally convex spaces. J. Math. Anal. Appl. 332, 965â974 (2007). doi: 10.1016/j.jmaa.2006.10.045Ka̧kol, J., LĂłpez-Pellicer, M.: A characterization of Lindelöf ÎŁ-spaces Ï
X (preprint)Ka̧kol J., LĂłpez-Pellicer M., Ćliwa W.: Weakly K-analytic spaces and the three-space property for analyticity. J. Math. Anal. Appl. 362(1), 90â99 (2010). doi: 10.1016/j.jmaa.2009.09.026Ka̧kol J., Saxon S.: Montel (DF)-spaces, sequential (LM)-spaces and the strongest locally convex topology. J. Lond. Math. Soc. 66(2), 388â406 (2002)Ka̧kol J., Saxon S., Todd A.T.: Pseudocompact spaces X and df-spaces C c (X). Proc. Am. Math. Soc. 132, 1703â1712 (2004)Ka̧kol J., Ćliwa W.: Strongly Hewitt spaces. Topology Appl. 119(2), 219â227 (2002). doi: 10.1016/S0166-8641(01)00063-3Khan L.A.: Trans-separability in spaces of continuous vector-valued functions. Demonstr. Math. 37, 61â67 (2004)Khan L.A.: Trans-separability in the strict and compact-open topologies. Bull. Korean Math. Soc. 45, 681â687 (2008). doi: 10.4134/BKMS.2008.45.4.681Khurana S.S.: Weakly compactly generated FrĂ©chet spaces. Int. J. Math. Math. Sci. 2(4), 721â724 (1979). doi: 10.1155/S0161171279000557Kirk R.B.: A note on the Mackey topology for (C b (X)*,C b (X)). Pacific J. Math. 45(2), 543â554 (1973)Köthe G.: Topological Vector Spaces I. Springer, Berlin (1969)KubiĆ W., Okunev O., Szeptycki P.J.: On some classes of Lindelöf ÎŁ-spaces. Topol. Appl. 153(14), 2574â2590 (2006). doi: 10.1016/j.topol.2005.09.009KĂŒnzi H.P.A., MrĆĄeviÄ M., Reilly I.L., Vamanamurthy M.K.: Pre-Lindelöf quasi-pseudo-metric and quasi-uniform spaces. Mat. Vesnik 46, 81â87 (1994)Megginson R.: An Introduction to Banach Space Theory. Springer, Berlin (1988)Michael E.: â”0-spaces. J. Math. Mech. 15, 983â1002 (1966)Nagami K.: ÎŁ-spaces. Fund. Math. 61, 169â192 (1969)Narayanaswami P.P., Saxon S.A.: (LF)-spaces, quasi-Baire spaces and the strongest locally convex topology. Math. Ann. 274, 627â641 (1986). doi: 10.1007/BF01458598Negrepontis S.: Absolute Baire sets. Proc. Am. Math. Soc. 18(4), 691â694 (1967). doi: 10.2307/2035440Orihuela J.: Pointwise compactness in spaces of continuous functions. J. Lond. Math. Soc. 36(2), 143â152 (1987). doi: 10.1112/jlms/s2-36.1.143Orihuela, J.: On weakly Lindelöf Banach spaces. In: Bierstedt, K.D. et al. (eds.) Progress in Functional Analysis, pp. 279â291. Elsvier, Amsterdam (1992). doi: 10.1016/S0304-0208(08)70326-8Orihuela J., Schachermayer W., Valdivia M.: Every ReadomâNikodym Corson compact space is Eberlein compact. Stud. Math. 98, 157â174 (1992)Orihuela, J., Valdivia, M.: Projective generators and resolutions of identity in Banach spaces. Rev. Mat. Complut. 2(Supplementary Issue), 179â199 (1989)PĂ©rez Carreras P., Bonet J.: Barrelled Locally Convex Spaces, Mathematics Studies 131. North-Holland, Amsterdam (1987)Pfister H.H.: Bemerkungen zum Satz ĂŒber die separabilitĂ€t der FrĂ©chet-Montel RaĂŒme. Arch. Math. (Basel) 27, 86â92 (1976). doi: 10.1007/BF01224645Robertson N.: The metrisability of precompact sets. Bull. Aust. Math. Soc. 43(1), 131â135 (1991). doi: 10.1017/S0004972700028847Rogers C.A., Jayne J.E., Dellacherie C., TopsĂže F., Hoffman-JĂžrgensen J., Martin D.A., Kechris A.S., Stone A.H.: Analytic Sets. Academic Press, London (1980)Saxon S.A.: Nuclear and product spaces, Baire-like spaces, and the strongest locally convex topology. Math. Ann. 197(2), 87â106 (1972). doi: 10.1007/BF01419586Schawartz L.: Radom Measures on Arbitrary Topological Spaces and Cylindrical Measures. Oxford University Press, Oxford (1973)SchlĂŒchtermann G., Wheller R.F.: On strongly WCG Banach spaces. Math. Z. 199(3), 387â398 (1988). doi: 10.1007/BF01159786SchlĂŒchtermann G., Wheller R.F.: The Mackey dual of a Banach space. Note Math. 11, 273â287 (1991)Schmets, J.: Espaces de functions continues. Lecture Notes in Mathematics, vol 519, Springer-Verlag, Berlin-New York (1976)Talagrand M.: Sur une conjecture de H. H. Corson. Bull. Soc. Math. 99, 211â212 (1975)Talagrand M.: Espaces de Banach faiblement K-analytiques. Ann. Math. 110, 407â438 (1979)Talagrand M.: Weak Cauchy sequences in L 1(E). Am. J. Math. 106(3), 703â724 (1984). doi: 10.2307/2374292Tkachuk V.V.: A space C p (X) is dominated by irrationals if and only if it is K-analytic. Acta Math. Hungar. 107(4), 253â265 (2005)Tkachuk V.V.: Lindelöf ÎŁ-spaces: an omnipresent class. RACSAM Rev. R. Acad. Cienc. Exactas Fis. Nat. Ser. A. Mat. 104(2), 221â244 (2010). doi: 10.5052/RACSAM.2010.15Todd A.R., Render H.: Continuous function spaces, (db)-spaces and strongly Hewitt spaces. Topol. Appl. 141, 171â186 (2004). doi: 10.1016/j.topol.2003.12.005Valdivia M.: Topics in Locally Convex Spaces, Mathematics Studies 67. North-Holland, Amsterdam (1982)Valdivia M.: Espacios de FrĂ©chet de generaciĂłn dĂ©bilmente compacta. Collect. Math. 38, 17â25 (1987)Valdivia M.: Resolutions of identity in certain Banach spaces. Collect. Math. 38, 124â140 (1988)Valdivia M.: Resolutions of identity in certain metrizable locally convex spaces. Rev. R. Acad. Cienc. Exactas Fis. Nat. (Esp.) 83, 75â96 (1989)Valdivia M.: Projective resolutions of identity in C(K) spaces. Arch. Math. (Basel) 54, 493â498 (1990)Valdivia, M.: Resoluciones proyectivas del operador identidad y bases de Markusevich en ciertos espacios de Banach. Rev. R. Acad. Cienc. Exactas Fis. Nat. (Esp.) 84, 23â34Valdivia M.: Quasi-LB-spaces. J. Lond. Math. Soc. 35(2), 149â168 (1987). doi: 10.1112/jlms/s2-35.1.149Walker, R.C.: The Stone-Äech compactification Ergebnisse der Mathematik und ihrer Grenzgebiete. Band 83. Springer, Berlin (1974
A characterization of weighted -spaces of holomorphic functions having the dual density condition
summary:We characterize when weighted -spaces of holomorphic functions have the dual density condition, when the weights are radial and grow logarithmically
- âŠ