9,396 research outputs found
Non-contact temperature measurement requirements
The Marshall Space Flight Center is involved with levitation experiments for Spacelab, Space Station, and drop tube/tower operations. These experiments have temperature measurement requirements, that of course must be non-contact in nature. The experiment modules involved are the Acoustic Levitator Furnace (ALF), and the Modular Electromagnetic Levitator (MEL). User requirements of the ALF and drop tube are presented. The center also has temperature measurement needs that are not microgravity experiment oriented, but rather are related to the propulsion system for the STS. This requirement will also be discussed
Quantum-enhanced capture of photons using optical ratchet states
Natural and artificial light harvesting systems often operate in a regime
where the flux of photons is relatively low. Besides absorbing as many photons
as possible it is therefore paramount to prevent excitons from annihilation via
photon re-emission until they have undergone an irreversible energy conversion
process. Taking inspiration from photosynthetic antenna structures, we here
consider ring-like systems and introduce a class of states we call ratchets:
excited states capable of absorbing but not emitting light. This allows our
antennae to absorb further photons whilst retaining the excitations from those
that have already been captured. Simulations for a ring of four sites reveal a
peak power enhancement by up to a factor of 35 under ambient conditions owing
to a combination of ratcheting and the prevention of emission through
dark-state population. In the slow extraction limit the achievable power
enhancement due to ratcheting alone exceeds 20%.Comment: major revision with improved model (all data and figures updated
Superabsorption of light via quantum engineering
Almost 60 years ago Dicke introduced the term superradiance to describe a
signature quantum effect: N atoms can collectively emit light at a rate
proportional to N^2. Even for moderate N this represents a significant increase
over the prediction of classical physics, and the effect has found applications
ranging from probing exciton delocalisation in biological systems, to
developing a new class of laser, and even in astrophysics. Structures that
super-radiate must also have enhanced absorption, but the former always
dominates in natural systems. Here we show that modern quantum control
techniques can overcome this restriction. Our theory establishes that
superabsorption can be achieved and sustained in certain simple nanostructures,
by trapping the system in a highly excited state while extracting energy into a
non-radiative channel. The effect offers the prospect of a new class of quantum
nanotechnology, capable of absorbing light many times faster than is currently
possible; potential applications of this effect include light harvesting and
photon detection. An array of quantum dots or a porphyrin ring could provide an
implementation to demonstrate this effect
A retrospective study of admission trends of koalas to a rehabilitation facility over 30 years
To identify threats to the survival of koalas (Phascolarctos cinereus) in coastal New South Wales, Australia, we compared 3,781 admission records of koalas, admitted between 1 January 1975 and 31 December 2004 to a koala rehabilitation facility on the midnorthern coast of New South Wales, against local wild population demographics, with the use of multinomial logistic regression and chi-square analyses. Trauma, the most frequent reason for admission, affected young and male animals more frequently than other groups. Seasonal differences in the probability of males presenting as trauma cases suggest behavioral factors as an important risk factor for this group. An increasing probability of koalas presenting as a result of motor vehicle accident since 1985 strongly supports the enhanced action of local authorities to pursue traffic-calming strategies if urban koala populations are to be maintained in this area. Koalas with clinical signs of chlamydiosis made up the second most frequent admission group, and these animals were more likely to be aged. This study highlights the potential usefulness of wildlife rehabilitation centers in detailing threats to local wildlife populations, provided record keeping is efficient and focused, and the role of such studies in providing evidence for focusing threat-mitigation efforts. Continual community engagement by koala researchers is important to ensure that maximum benefit is obtained from activities of special interest groups. Keywords: Koala, Phascolarctos cinereus, New South Wales, threats, wildlife rehabilitationARC Linkage Grant LP0560572
Inflammatory Regulation of CNS Barriers After Traumatic Brain Injury: A Tale Directed by Interleukin-1
Several barriers separate the central nervous system (CNS) from the rest of the body. These barriers are essential for regulating the movement of fluid, ions, molecules, and immune cells into and out of the brain parenchyma. Each CNS barrier is unique and highly dynamic. Endothelial cells, epithelial cells, pericytes, astrocytes, and other cellular constituents each have intricate functions that are essential to sustain the brain’s health. Along with damaging neurons, a traumatic brain injury (TBI) also directly insults the CNS barrier-forming cells. Disruption to the barriers first occurs by physical damage to the cells, called the primary injury. Subsequently, during the secondary injury cascade, a further array of molecular and biochemical changes occurs at the barriers. These changes are focused on rebuilding and remodeling, as well as movement of immune cells and waste into and out of the brain. Secondary injury cascades further damage the CNS barriers. Inflammation is central to healthy remodeling of CNS barriers. However, inflammation, as a secondary pathology, also plays a role in the chronic disruption of the barriers’ functions after TBI. The goal of this paper is to review the different barriers of the brain, including (1) the blood-brain barrier, (2) the blood-cerebrospinal fluid barrier, (3) the meningeal barrier, (4) the blood-retina barrier, and (5) the brain-lesion border. We then detail the changes at these barriers due to both primary and secondary injury following TBI and indicate areas open for future research and discoveries. Finally, we describe the unique function of the pro-inflammatory cytokine interleukin-1 as a central actor in the inflammatory regulation of CNS barrier function and dysfunction after a TBI
Basins of attraction on random topography
We investigate the consequences of fluid flowing on a continuous surface upon
the geometric and statistical distribution of the flow. We find that the
ability of a surface to collect water by its mere geometrical shape is
proportional to the curvature of the contour line divided by the local slope.
Consequently, rivers tend to lie in locations of high curvature and flat
slopes. Gaussian surfaces are introduced as a model of random topography. For
Gaussian surfaces the relation between convergence and slope is obtained
analytically. The convergence of flow lines correlates positively with drainage
area, so that lower slopes are associated with larger basins. As a consequence,
we explain the observed relation between the local slope of a landscape and the
area of the drainage basin geometrically. To some extent, the slope-area
relation comes about not because of fluvial erosion of the landscape, but
because of the way rivers choose their path. Our results are supported by
numerically generated surfaces as well as by real landscapes
Widespread dysregulation of MiRNAs by MYCN amplification and chromosomal imbalances in neuroblastoma: association of miRNA expression with survival
MiRNAs regulate gene expression at a post-transcriptional level and their dysregulation can play major roles in the pathogenesis of many different forms of cancer, including neuroblastoma, an often fatal paediatric cancer originating from precursor cells of the sympathetic nervous system. We have analyzed a set of neuroblastoma (n = 145) that is broadly representative of the genetic subtypes of this disease for miRNA expression (430 loci by stem-loop RT qPCR) and for DNA copy number alterations (array CGH) to assess miRNA involvement in disease pathogenesis. The tumors were stratified and then randomly split into a training set (n = 96) and a validation set (n = 49) for data analysis. Thirty-seven miRNAs were significantly over-or under-expressed in MYCN amplified tumors relative to MYCN single copy tumors, indicating a potential role for the MYCN transcription factor in either the direct or indirect dysregulation of these loci. In addition, we also determined that there was a highly significant correlation between miRNA expression levels and DNA copy number, indicating a role for large-scale genomic imbalances in the dysregulation of miRNA expression. In order to directly assess whether miRNA expression was predictive of clinical outcome, we used the Random Forest classifier to identify miRNAs that were most significantly associated with poor overall patient survival and developed a 15 miRNA signature that was predictive of overall survival with 72.7% sensitivity and 86.5% specificity in the validation set of tumors. We conclude that there is widespread dysregulation of miRNA expression in neuroblastoma tumors caused by both over-expression of the MYCN transcription factor and by large-scale chromosomal imbalances. MiRNA expression patterns are also predicative of clinical outcome, highlighting the potential for miRNA mediated diagnostics and therapeutics
EXOGEN ultrasound bone healing system for long bone fractures with non-union or delayed healing: a NICE medical technology guidance
Open Access. This article is distributed under the terms of the Creative Commons Attribution Noncommercial License which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and the source are credited.This article has been made available through the Brunel Open Access Publishing Fund.A routine part of the process for developing National Institute for Health and Care Excellence (NICE) medical technologies guidance is a submission of clinical and economic evidence by the technology manufacturer. The Birmingham and Brunel Consortium External Assessment Centre (EAC; a consortium of the University of Birmingham and Brunel University) independently appraised the submission on the EXOGEN bone healing system for long bone fractures with non-union or delayed healing. This article is an overview of the original evidence submitted, the EAC’s findings, and the final NICE guidance issued.The Birmingham and Brunel Consortium is funded by NICE to act as an External Assessment Centre for the Medical Technologies Evaluation Programme
Acoustic Energy and Momentum in a Moving Medium
By exploiting the mathematical analogy between the propagation of sound in a
non-homogeneous potential flow and the propagation of a scalar field in a
background gravitational field, various wave ``energy'' and wave ``momentum''
conservation laws are established in a systematic manner. In particular the
acoustic energy conservation law due to Blokhintsev appears as the result of
the conservation of a mixed co- and contravariant energy-momentum tensor, while
the exchange of relative energy between the wave and the mean flow mediated by
the radiation stress tensor, first noted by Longuet-Higgins and Stewart in the
context of ocean waves, appears as the covariant conservation of the doubly
contravariant form of the same energy-momentum tensor.Comment: 25 Pages, Late
- …