631 research outputs found

    Metrology for electron-beam lithography and resist contrast at the sub-10 nm scale

    Get PDF
    Exploring the resolution limit of electron-beam lithography is of great interest both scientifically and technologically. However, when electron-beam lithography approaches its resolution limit, imaging and metrology of the fabricated structures by using standard scanning electron microscopy become difficult. In this work, the authors adopted transmission-electron and atomic-force microscopies to improve the metrological accuracy and to analyze the resolution limit of electron-beam lithography. With these metrological methods, the authors found that sub-5 nm sparse features could be readily fabricated by electron-beam lithography, but dense 16 nm pitch structures were difficult to yield. Measurements of point- and line-spread functions suggested that the resolution in fabricating sub-10 nm half-pitch structures was primarily limited by the resist-development processes, meaning that the development rates depended on pattern density and/or length scale.China Scholarship Council (Fellowship)United States. Dept. of Energy. Center for Excitonics (Award DE-SC0001088)Information Storage Industry ConsortiumNanoelectronics Research InitiativeNational Science Foundation (U.S.

    Limiting factors in sub-10 nm scanning-electron-beam lithography

    Get PDF
    Achieving the highest possible resolution using scanning-electron-beam lithography (SEBL) has become an increasingly urgent problem in recent years, as advances in various nanotechnology applications [ F. S. Bates and G. H. Fredrickson, Annu. Rev. Phys. Chem. 41, 525 (1990) ; Black et al., IBM J. Res. Dev. 51, 605 (2007) ; Yang et al., J. Chem. Phys. 116, 5892 (2002) ] have driven demand for feature sizes well into the sub-10 nm domain, close to the resolution limit of the current generation of SEBL processes. In this work, the authors have used a combination of calculation, modeling, and experiment to investigate the relative effects of resist contrast, beam scattering, secondary electron generation, system spot size, and metrology limitations on SEBL process resolution. In the process of investigating all of these effects, they have also successfully yielded dense structures with a pitch of 12 nm at voltages as low as 10 keV

    Understanding of hydrogen silsesquioxane electron resist for sub-5-nm-half-pitch lithography

    Get PDF
    The authors, demonstrated that 4.5-nm-half-pitch structures could be achieved using electron-beam lithography, followed by salty development. They also hypothesized a development mechanism for hydrogen silsesquioxane, wherein screening of the resist surface charge is crucial in achieving a high initial development rate, which might be a more accurate assessment of developer performance than developer contrast. Finally, they showed that with a high-development-rate process, a short duration development of 15 s was sufficient to resolve high-resolution structures in 15-nm-thick resist, while a longer development degraded the quality of the structures with no improvement in the resolution

    Multiple scattering of photons by atomic hyperfine multiplets

    Full text link
    Mesoscopic interference effects in multiple scattering of photons depend crucially on the internal structure of the scatterers. In the present article, we develop the analytical theory of multiple photon scattering by cold atoms with arbitrary internal hyperfine multiplets. For a specific application, we calculate the enhancement factor of elastic coherent backscattering as a function of detuning from an entire hyperfine multiplet of neighboring resonances that cannot be considered isolated. Our theory permits to understand why atoms behave differently from classical Rayleigh point-dipole scatterers, and how the classical description is recovered for larger but still microscopic objects like molecules or clusters.Comment: minor changes, published versio

    Vegetation structure derived from airborne laser scanning to assess species distribution and habitat suitability: The way forward

    Get PDF
    Ecosystem structure, especially vertical vegetation structure, is one of the six essential biodiversity variable classes and is an important aspect of habitat heterogeneity, affecting species distributions and diversity by providing shelter, foraging, and nesting sites. Point clouds from airborne laser scanning (ALS) can be used to derive such detailed information on vegetation structure. However, public agencies usually only provide digital elevation models, which do not provide information on vertical vegetation structure. Calculating vertical structure variables from ALS point clouds requires extensive data processing and remote sensing skills that most ecologists do not have. However, such information on vegetation structure is extremely valuable for many analyses of habitat use and species distribution. We here propose 10 variables that should be easily accessible to researchers and stakeholders through national data portals. In addition, we argue for a consistent selection of variables and their systematic testing, which would allow for continuous improvement of such a list to keep it up-to-date with the latest evidence. This initiative is particularly needed not only to advance ecological and biodiversity research by providing valuable open datasets but also to guide potential users in the face of increasing availability of global vegetation structure products

    Whole Genome Sequencing Indicates Heterogeneity of Hyperostotic Disorders in Dogs

    Get PDF
    Craniomandibular osteopathy (CMO) and calvarial hyperostotic syndrome (CHS) are proliferative, non-neoplastic disorders affecting the skull bones in young dogs. Different forms of these hyperostotic disorders have been described in many dog breeds. However, an incompletely dominant causative variant for CMO affecting splicing of SLC37A2 has been reported so far only in three Terrier breeds. The purpose of this study was to identify further possible causative genetic variants associated with CHS in an American Staffordshire Terrier, as well as CMO in seven affected dogs of different breeds. We investigated their whole-genome sequences (WGS) and filtered variants using 584 unrelated genomes, which revealed no variants shared across all affected dogs. However, filtering for private variants of each case separately yielded plausible dominantly inherited candidate variants in three of the eight cases. In an Australian Terrier, a heterozygous missense variant in the COL1A1 gene (c.1786G>A; p.(Val596Ile)) was discovered. A pathogenic missense variant in COL1A1 was previously reported in humans with infantile cortical hyperostosis, or Caffey disease, resembling canine CMO. Furthermore, in a Basset Hound, a heterozygous most likely pathogenic splice site variant was found in SLC37A2 (c.1446+1G>A), predicted to lead to exon skipping as shown before in SLC37A2-associated canine CMO of Terriers. Lastly, in a Weimaraner, a heterozygous frameshift variant in SLC35D1 (c.1021_1024delTCAG; p.(Ser341ArgfsTer22)) might cause CMO due to the critical role of SLC35D1 in chondrogenesis and skeletal development. Our study indicates allelic and locus heterogeneity for canine CMO and illustrates the current possibilities and limitations of WGS-based precision medicine in dogs

    Whole Genome Sequencing Indicates Heterogeneity of Hyperostotic Disorders in Dogs

    Get PDF
    Craniomandibular osteopathy (CMO) and calvarial hyperostotic syndrome (CHS) are proliferative, non-neoplastic disorders affecting the skull bones in young dogs. Different forms of these hyperostotic disorders have been described in many dog breeds. However, an incompletely dominant causative variant for CMO affecting splicing of SLC37A2 has been reported so far only in three Terrier breeds. The purpose of this study was to identify further possible causative genetic variants associated with CHS in an American Staffordshire Terrier, as well as CMO in seven affected dogs of different breeds. We investigated their whole-genome sequences (WGS) and filtered variants using 584 unrelated genomes, which revealed no variants shared across all affected dogs. However, filtering for private variants of each case separately yielded plausible dominantly inherited candidate variants in three of the eight cases. In an Australian Terrier, a heterozygous missense variant in the COL1A1 gene (c.1786G>A; p.(Val596Ile)) was discovered. A pathogenic missense variant in COL1A1 was previously reported in humans with infantile cortical hyperostosis, or Caffey disease, resembling canine CMO. Furthermore, in a Basset Hound, a heterozygous most likely pathogenic splice site variant was found in SLC37A2 (c.1446+1G>A), predicted to lead to exon skipping as shown before in SLC37A2-associated canine CMO of Terriers. Lastly, in a Weimaraner, a heterozygous frameshift variant in SLC35D1 (c.1021_1024delTCAG; p.(Ser341ArgfsTer22)) might cause CMO due to the critical role of SLC35D1 in chondrogenesis and skeletal development. Our study indicates allelic and locus heterogeneity for canine CMO and illustrates the current possibilities and limitations of WGS-based precision medicine in dogs

    Scanning-helium-ion-beam lithography with hydrogen silsesquioxane resist

    Get PDF
    A scanning-helium-ion-beam microscope is now commercially available. This microscope can be used to perform lithography similar to, but of potentially higher resolution than, scanning electron-beam lithography. This article describes the control of this microscope for lithography via beam steering/blanking electronics and evaluates the high-resolution performance of scanning helium-ion-beam lithography. The authors found that sub-10 nm-half-pitch patterning is feasible. They also measured a point-spread function that indicates a reduction in the micrometer-range proximity effect typical in electron-beam lithography.National Science Foundation (U.S.). Graduate Research Fellowship Progra

    Weak localization of light by cold atoms: the impact of quantum internal structure

    Get PDF
    Since the work of Anderson on localization, interference effects for the propagation of a wave in the presence of disorder have been extensively studied, as exemplified in coherent backscattering (CBS) of light. In the multiple scattering of light by a disordered sample of thermal atoms, interference effects are usually washed out by the fast atomic motion. This is no longer true for cold atoms where CBS has recently been observed. However, the internal structure of the atoms strongly influences the interference properties. In this paper, we consider light scattering by an atomic dipole transition with arbitrary degeneracy and study its impact on coherent backscattering. We show that the interference contrast is strongly reduced. Assuming a uniform statistical distribution over internal degrees of freedom, we compute analytically the single and double scattering contributions to the intensity in the weak localization regime. The so-called ladder and crossed diagrams are generalized to the case of atoms and permit to calculate enhancement factors and backscattering intensity profiles for polarized light and any closed atomic dipole transition.Comment: 22 pages Revtex, 9 figures, to appear in PR
    • …
    corecore