123 research outputs found

    Stem Cells for Modeling Human Disease

    Get PDF
    Human pluripotent stem cells (PSCs) in the form of human embryonic stem cells (hESCs) or induced pluripotent stem cells (iPSCs) are capable of growing indefinitely in vitro, maintaining their capacity to differentiate into the three primary germ layers: mesoderm, endoderm and ectoderm. Different protocols have been developed to differentiate PSCs into almost any cellular type with different degree of success. This technology has allowed scientists to use patient‐derived iPSCs to study the physiopathology of the disease by analyzing the phenotype of the cells derived from these iPSCs. However, control iPSCs obtained from healthy individuals will always have different genomic environment than patient\u27s iPSCs, making it difficult the interpretation of the cells phenotype. The recent appearance of specific nucleases [zinc‐finger nucleases (ZFNs), the transcription activator‐like effector nucleases (TALENs) and the clustered regularly interspaced short palindromic repeats (CRISPR)] has made it possible to edit the genome of PSCs. We can now generate syngeneic hESCs or iPSCs harboring the desired mutation and comparing the emerging cells with those derived from genetically identical PSCs that will differ only in the mutated gene. In this chapter, we summarize the progress made in this field and discuss the different approaches that have been used recently for the generation of syngeneic human pluripotent cellular models for different pathologies

    Blockchain Technology for Viable Circular Digital Supply Chains: An Integrated Approach for Evaluating the Implementation Barriers

    Get PDF
    Blockchain technology (BT) is creating a new standard for all business operations. It can assist businesses in handling the complexity of circular digital supply chain management. Despite this optimistic view, several barriers hinder its implementation. In this regard, this study contributes to Industry 4.0, Circular Economy, the viability with a critical emphasis on its potential ramifications and influence on the future agenda while using BT technology in supply chain (SC). In addition, the research reduces the knowledge gap by investigating and ranking the key barriers to the deployment of BT in viable circular digital supply chains (VCDSCs) and studies their interdependencies and causal relationships. The barriers to BT adoption in VCDSC are identified through a thorough literature review and considering viability performance. These barriers are then classified using the AHP method. DEMATEL is then employed to examine the cause/effect, correlation, and connection among the 14 barriers selected barriers from the AHP classification to estimate each barrier's overall degree of impact over the others. This paper identifies and analyses the BT adoption barriers in VCDSC as well as examines how the key barriers interact. As a result, according to the AHP/DEMATEL method, the most prominent influencing barriers to the BT implementation in VCDSC are “Data transparency”, “Market competition”, “Missing infrastructure”, “Lack of standardization”, “Complex protocol”, “Lack of industry involvement”, “Financial constraints”, “Missing infrastructure”, “Data transparency” and “Interoperability”. The outcomes offer a potential path for identifying important barriers as well as insight into the implementation of BT in SC while integrating different capabilities such as viability, sustainability, and circular economy principles. Managers and researchers will benefit from this research by gaining an understanding of the challenges that must be prioritized and examined for BT to be implemented successfully in VCDSC. The use and implementation of Blockchain-enabled VCDSC continue to face challenges despite an increase in relevant practice and research. Despite the benefits of blockchain technology, managers struggle to apply such technology in the context of their company. In this respect, this paper uses an integrated AHP-DEMATEL for categorizing the BT barriers as well as the interrelationship between them. In this respect, this paper presents a The BT barriers studied are those related to the use of BT in SC while integrating different paradigms such as viability, digitalization, and circular economy. While many studies look at the barriers to BT adoption, none of them has ever included the viable capability, which means the ability to "react agilely to positive changes, be resilient to absorb negative events and re-cover after disruptions and survive at long-term periods". The study concludes with insightful comments based on the findings and suggestions for eradicating those obstacles and their associated effects

    Sustainable and Resilient Supplier Selection in the Context of Circular Economy: An Ontology-Based Model

    Get PDF
    Purpose: Selecting the optimal supplier is a challenging managerial decision that involves several dimensions that vary over time. Despite the considerable attention devoted to this issue, knowledge is required to be updated and analyzed in this field. This paper reveals new opportunities to advance supplier selection research from a multidimensional perspective. Moreover, this study aims to formalise supplier selection knowledge to enable the appropriate selection of sustainable, resilient and circular criteria. Design/methodology/approach: This study is developed in two stages. First, a systematic literature review is conducted to select relevant papers. Descriptive and thematic analyses are employed to analyze criteria, solving approaches and case studies. Second, a criterion knowledge-based framework is developed and validated by experts to be implemented as ontology using Protégé software. Findings: (1) Evaluating the viability of suppliers need further studies to integrate other criteria and to align supplier selection objectives with research advancement; (2) Artificial intelligence tools are needed to revolutionize and optimize the traditional techniques used to solve this problem; (3) Literature lucks frameworks for specific sectors; (4) The proposed ontology provides a consistent criteria knowledge base. Practical Implications: For academics, the results of this study highlight opportunities to improve the viable supplier selection process. From a managerial perspective, the proposed ontology can assist managers in selecting the appropriate criteria. Future works can enrich the proposed ontology and integrate this knowledge base into an information system. Originality/value: This study contributes to promoting knowledge about viable supplier selection. Capitalizing the knowledge base of criteria in a computer-interpretable manner supports the digitalization of this critical decision

    Gene therapy with mesenchymal stem cells expressing IFN-ß ameliorates neuroinflammation in experimental models of multiple sclerosis

    Get PDF
    [Background and Purpose]: Recombinant IFN‐ß is one of the first‐line treatments in multiple sclerosis (MS), despite its lack of efficacy in some patients. In this context, mesenchymal stem cells (MSCs) represent a promising therapeutic alternative due to their immunomodulatory properties and multipotency. Moreover, by taking advantage of their pathotropism, these cells can be genetically modified to be used as carriers for delivering or secreting therapeutic drugs into injured tissues. Here, we report the therapeutic effect of systemic delivery of adipose‐derived MSCs (AdMSCs), transduced with the IFN‐β gene, into mice with experimental autoimmune encephalomyelitis (EAE).[Experimental Approach]: Relapsing–remitting and chronic progressive EAE were induced in mice. Cells were injected i.v. Disease severity, inflammation and tissue damage were assessed clinically, by flow cytometry of spleens and histopathological evaluation of the CNS respectively.[Key Results]: Genetic engineering did not modify the biological characteristics of these AdMSCs (morphology, growth rate, immunophenotype and multipotency). Furthermore, the transduction of IFN‐ß to AdMSCs maintained and, in some cases, enhanced the functional properties of AdMSCs by ameliorating the symptoms of MS in EAE models and by decreasing indications of peripheral and central neuro‐inflammation.[Conclusion and Implications]: Gene therapy was found to be more effective than cell therapy in ameliorating several clinical parameters in both EAE models, presumably due to the continuous expression of IFN‐β. Furthermore, it has significant advantages over AdMSC therapy, and also over systemic IFN‐ß treatment, by providing long‐term expression of the cytokine at therapeutic concentrations and reducing the frequency of injections, while minimizing dose‐limiting side effects.This work was supported by Fondo de Investigaciones Sanitarias ISCIII (Spain) and Fondo Europeo de Desarrollo Regional (FEDER) from the European Union through the research grants PI12/01097 and PI15/00963 and ISCIII Red de Terapia Celular TerCel RD12/0019/0006 to F.M., by the Consejería de Economía, Innovación, Ciencia y Empleo, Junta de Andalucía‐FEDER/Fondo de Cohesion Europeo (FSE) de Andalucía through the research grants P09‐CTS‐04532, PI‐57069 and PAIDI‐Bio‐326 to F.M. and PI‐0160/2012 to K.B. M.J.P.‐M. has been supported by grants from Red Temática de Investigación Cooperativa Red Española de Esclerosis Múltiple REEM (RD07/0060 and RD12/0032). B.O. is financed by a contract from Excelent Project CTS‐7670/11 from Consejería de Economía, Innovación, Ciencia y Empleo (Junta de Andalucía)

    Physiological lentiviral vectors for the generation of improved CAR-T cells

    Full text link
    Anti-CD19 chimeric antigen receptor (CAR)-T cells have achieved impressive outcomes for the treatment of relapsed and refractory B-lineage neoplasms. However, important limitations still remain due to severe adverse events (i.e., cytokine release syndrome and neuroinflammation) and relapse of 40%-50% of the treated patients. Most CAR-T cells are generated using retroviral vectors with strong promoters that lead to high CAR expression levels, tonic signaling, premature exhaustion, and overstimulation, reducing efficacy and increasing side effects. Here, we show that lentiviral vectors (LVs) expressing the transgene through a WAS gene promoter (AW-LVs) closely mimic the T cell receptor (TCR)/CD3 expression kinetic upon stimulation. These AW-LVs can generate improved CAR-T cells as a consequence of their moderate and TCR-like expression profile. Compared with CAR-T cells generated with human elongation factor alpha (EF1 alpha)-driven-LVs, AW-CAR-T cells exhibited lower tonic signaling, higher proportion of naive and stem cell memory T cells, less exhausted phenotype, and milder secretion of tumor necrosis factor alpha (TNF-alpha) and interferon (IFN)-gamma after efficient destruction of CD19(+) lymphoma cells, both in vitro and in vivo. Moreover, we also showed their improved efficiency using an in vitro CD19(+) pancreatic tumor model. We finally demonstrated the feasibility of large-scale manufacturing of AW-CAR-T cells in guanosine monophosphate (GMP)-like conditions. Based on these data, we propose the use of AWLVs for the generation of improved CAR-T products

    Gene Therapy Corrects Mitochondrial Dysfunction in Hematopoietic Progenitor Cells and Fibroblasts from Coq9R239X Mice

    Get PDF
    This study has been submitted to the patent's offices at the "University of Granada" and "Fundación Progreso y Salud". Please note that the results of this manuscript have been submitted to patent protection (application number P201630630; title: “Uses of Coenzyme Q biosynthetic proteins”; date:05/16/2016).Recent clinical trials have shown that in vivo and ex vivo gene therapy strategies can be an option for the treatment of several neurological disorders. Both strategies require efficient and safe vectors to 1) deliver the therapeutic gene directly into the CNS or 2) to genetically modify stem cells that will be used as Trojan horses for the systemic delivery of the therapeutic protein. A group of target diseases for these therapeutic strategies are mitochondrial encephalopathies due to mutations in nuclear DNA genes. In this study, we have developed a lentiviral vector (CCoq9WP) able to overexpress Coq9 mRNA and COQ9 protein in mouse embryonic fibroblasts (MEFs) and hematopoietic progenitor cells (HPCs) from Coq9R239X mice, an animal model of mitochondrial encephalopathy due to primary Coenzyme Q (CoQ) deficiency. Ectopic over-expression of Coq9 in both cell types restored the CoQ biosynthetic pathway and mitochondrial function, improving the fitness of the transduced cells. These results show the potential of the CCoq9WP lentiviral vector as a tool for gene therapy to treat mitochondrial encephalopathies.This work was supported by grants from Ministerio de Economía y Competitividad (Spain) and the European Regional Development Fund (ERDF) from the European Union, to LCL through the research grants SAF2013-47761-R and SAF2015-65786-R; by Fondo de Investigaciones Sanitarias ISCIII (Spain) and the European Regional Development Fund (ERDF) from the European Union through the research grants PI12/01097 and ISCIII Red de Terapia Celular TerCel RD12/0019/0006 to FM; by the Consejería de Economía, Innovación, Ciencia y Empleo, Junta de Andalucía-FEDER/Fondo de Cohesion Europeo (FSE) de Andalucía through the research grants P10-CTS-6133 to LCL; P09-CTS-04532, PI-57069, PI-0001/2009 and PAIDI-Bio-326 to F.M.; PI-0160/2012 to KB and PI-0407/2012 to MC; by the NIH through the research P01HD080642 to LCL and by the foundation “todos somos raros, todos somos únicos” to LCL. LCL is supported by the ‘Ramón y Cajal’ National Programme, Ministerio de Economía y Competitividad, Spain (RYC-2011-07643)

    Development of an All-in-One Lentiviral Vector System Based on the Original TetR for the Easy Generation of Tet-ON Cell Lines

    Get PDF
    Lentiviral vectors (LVs) are considered one of the most promising vehicles to efficiently deliver genetic information for basic research and gene therapy approaches. Combining LVs with drug-inducible expression systems should allow tight control of transgene expression with minimal side effect on relevant target cells. A new doxycycline-regulated system based on the original TetR repressor was developed in 1998 as an alternative to the TetR-VP16 chimeras (tTA and rtTA) to avoid secondary effects due to the expression of transactivator domains. However, previously described TetR-based systems required cell cloning and/or antibiotic selection of tetracycline-responsive cells in order to achieve good regulation. In the present manuscript we have constructed a dual Tet-ON system based on two lentiviral vectors, one expressing the TetR through the spleen focus forming virus (SFFV) promoter (STetR) and a second expressing eGFP through the regulatable CMV-TetO promoter (CTetOE). Using these vectors we have demonstrated that the TetR repressor, contrary to the reverse transactivator (rtTA), can be expressed in excess to bind and modulate a high number of TetO operons. We have also showed that this dual vector system can generate regulatable bulk cell lines (expressing high levels of TetR) that are able to modulate transgene expression either by varying doxycycline concentration and/or by varying the amount of CTetOE vector genomes per cell. Based on these results we have developed a new all-in-one lentiviral vector (CEST) driving the expression of TetR through the SFFV promoter and the expression of eGFP through the doxycycline-responsive CMV-TetO operon. This vector efficiently produced Tet-ON regulatable immortalized (293T) and primary (human mesenchymal stem cells and human primary fibroblasts) cells. Bulk doxycycline-responsive cell lines express high levels of the transgene with low amount of doxycycline and are phenotypically indistinct from its parental cells

    Visualization of Spatiotemporal Energy Dynamics of Hippocampal Neurons by Mass Spectrometry during a Kainate-Induced Seizure

    Get PDF
    We report the use of matrix-assisted laser desorption/ionization (MALDI) imaging mass spectrometry combined with capillary electrophoresis (CE) mass spectrometry to visualize energy metabolism in the mouse hippocampus by imaging energy-related metabolites. We show the distribution patterns of ATP, ADP, and AMP in the hippocampus as well as changes in their amounts and distribution patterns in a murine model of limbic, kainate-induced seizure. As an acute response to kainate administration, we found massive and moderate reductions in ATP and ADP levels, respectively, but no significant changes in AMP levels—especially in cells of the CA3 layer. The results suggest the existence of CA3 neuron-selective energy metabolism at the anhydride bonds of ATP and ADP in the hippocampal neurons during seizure. In addition, metabolome analysis of energy synthesis pathways indicates accelerated glycolysis and possibly TCA cycle activity during seizure, presumably due to the depletion of ATP. Consistent with this result, the observed energy depletion significantly recovered up to 180 min after kainate administration. However, the recovery rate was remarkably low in part of the data-pixel population in the CA3 cell layer region, which likely reflects acute and CA3-selective neural death. Taken together, the present approach successfully revealed the spatiotemporal energy metabolism of the mouse hippocampus at a cellular resolution—both quantitatively and qualitatively. We aim to further elucidate various metabolic processes in the neural system

    An Introduction to Sphingolipid Metabolism and Analysis by New Technologies

    Get PDF
    Sphingolipids (SP) are a complex class of molecules found in essentially all eukaryotes and some prokaryotes and viruses where they influence membrane structure, intracellular signaling, and interactions with the extracellular environment. Because of the combinatorial nature of their biosynthesis, there are thousands of SP subspecies varying in the lipid backbones and complex phospho- and glycoheadgroups. Therefore, comprehensive or “sphingolipidomic” analyses (structure-specific, quantitative analyses of all SP, or at least all members of a critical subset) are needed to know which and how much of these subspecies are present in a system as a step toward understanding their functions. Mass spectrometry and related novel techniques are able to quantify a small fraction, but nonetheless a substantial number, of SP and are beginning to provide information about their localization. This review summarizes the basic metabolism of SP and state-of-art mass spectrometric techniques that are producing insights into SP structure, metabolism, functions, and some of the dysfunctions of relevance to neuromedicine
    corecore