1,231 research outputs found

    Effects of Nacelle configuration/position on performance of subsonic transport

    Get PDF
    An experimental study was conducted to explore possible reductions in installed propulsion system drag due to underwing aft nacelle locations. Both circular (C) and D inlet cross section nacelles were tested. The primary objectives were: to determine the relative installed drag of the C and D nacelle installations; and, to compare the drag of each aft nacelle installation with that of a conventional underwing forward, drag of each aft nacelle installation with that of a conventional underwing forward, pylon mounted (UTW) nacelle installation. The tests were performed in the NASA-Langley Research Center 16-Foot Transonic Wind Tunnel at Mach numbers from 0.70 to 0.85, airplane angles of attack from -2.5 to 4.1 degrees, and Reynolds numbers per foot from 3.4 to 4.0 million. The nacelles were installed on the NASA USB full span transonic transport model with horizontal tail on. The D nacelle installation had the smallest drag of those tested. The UTW nacelle installation had the largest drag, at 6.8 percent larger than the D at Mach number 0.80 and lift coefficient (C sub L) 0.45. Each tested configuration still had some interference drag, however. The effect of the aft nacelles on airplane lift was to increase C sub L at a fixed angle of attack relative to the wing body. There was higher lift on the inboard wing sections because of higher pressures on the wing lower surface. The effects of the UTW installation on lift were opposite to those of the aft nacelles

    Carboniferous pycnoxylic woods from the Dwyka Group of southern Namibia

    Get PDF
    Glacial deposits of the Dwyka Group between Keetmanshoop and Mariental in southern Namibia have been reinvestigated for palaeontological remains and associated tuff horizons in an attempt to accurately date the deposits. SHRIMP-based dating of juvenile zircons from these tuff horizons provide ages which cumulate in the latest Carboniferous (Gzelian). The pycnoxylic woods Megaporoxylon scherziKrausel and Megaporoxylon kaokense Krausel are described in detail for the first time and are compared with similar permineralised woods from Gondwana. Based on previous fossil wood studies covering the rocks of the main Karoo Basin, these species occur only in the Dwyka and lower Ecca Groups in southern Africa and do not extend to the upper Ecca Group.The Council's Research Committee, University of the Witwatersrand; National Research Foundation (NRF); Palaeo-Anthropology Scientific Trust (PAST); German Research Foundation (DFG) and the Postgraduate Research Program "Interdisciplinary Geoscience Research in Africa

    Drug deprescription-withdrawal risk, prevention, and treatment

    Get PDF
    In most cases, a sudden interruption of most medications has no major consequences. There are well-recognized therapies that, when withheld, can either lead to the reappearance of the symptoms they were controlling or to signs or symptoms of withdrawal. In this article, we present a table including medications that when interrupted can produce withdrawal syndromes, the signs and symptoms of the withdrawal syndrome, the time to onset and resolution of the syndrome, information regarding alternative delivery options for the drug/s when the oral route is not possible, as well as prevention and therapy

    Mobile metal adatoms on single layer, bilayer and trilayer graphene: an ab initio study correlated with experimental electron microscopy data

    No full text
    The plane-wave density functional theory code CASTEP was used with the Tkatchenko-Scheffler van der Waals correction scheme and the generalized gradient approximation of Perdew, Burke, and Ernzerhof (GGA PBE) to calculate the binding energy of Au, Cr, and Al atoms on the armchair and zigzag edge binding sites of monolayer graphene, and at the high-symmetry adsorption sites of single layer, bilayer, and trilayer graphene. All edge site binding energies were found to be substantially higher than the adsorption energies for all metals. The adatom migration activation barriers for the lowest energy migration paths on pristine monolayer, bilayer, and trilayer graphene were then calculated and found to be smaller than or within an order of magnitude of kBT at room temperature, implying very high mobility for all adatoms studied. This suggests that metal atoms evaporated onto graphene samples quickly migrate across the lattice and bind to the energetically favorable edge sites before being characterized in the microscope. We then prove this notion for Al and Au on graphene with scanning transmission electron microscopy (STEM) images showing that these atoms are observed exclusively at edge sites, and also hydrocarbon-contaminated regions, where the pristine regions of the lattice are completely devoid of adatoms. Additionally, we review the issue of fixing selected atomic positions during geometry optimization calculations for graphene/adatom systems and suggest a guiding principle for future studies

    Insecurity for compact surfaces of positive genus

    Full text link
    A pair of points in a riemannian manifold MM is secure if the geodesics between the points can be blocked by a finite number of point obstacles; otherwise the pair of points is insecure. A manifold is secure if all pairs of points in MM are secure. A manifold is insecure if there exists an insecure point pair, and totally insecure if all point pairs are insecure. Compact, flat manifolds are secure. A standing conjecture says that these are the only secure, compact riemannian manifolds. We prove this for surfaces of genus greater than zero. We also prove that a closed surface of genus greater than one with any riemannian metric and a closed surface of genus one with generic metric are totally insecure.Comment: 37 pages, 11 figure

    The Cosmological Time Function

    Get PDF
    Let (M,g)(M,g) be a time oriented Lorentzian manifold and dd the Lorentzian distance on MM. The function τ(q):=supp<qd(p,q)\tau(q):=\sup_{p< q} d(p,q) is the cosmological time function of MM, where as usual p<qp< q means that pp is in the causal past of qq. This function is called regular iff τ(q)<\tau(q) < \infty for all qq and also τ0\tau \to 0 along every past inextendible causal curve. If the cosmological time function τ\tau of a space time (M,g)(M,g) is regular it has several pleasant consequences: (1) It forces (M,g)(M,g) to be globally hyperbolic, (2) every point of (M,g)(M,g) can be connected to the initial singularity by a rest curve (i.e., a timelike geodesic ray that maximizes the distance to the singularity), (3) the function τ\tau is a time function in the usual sense, in particular (4) τ\tau is continuous, in fact locally Lipschitz and the second derivatives of τ\tau exist almost everywhere.Comment: 19 pages, AEI preprint, latex2e with amsmath and amsth
    corecore