267 research outputs found

    Measurement of complement receptor 1 on neutrophils in bacterial and viral pneumonia

    Get PDF
    BACKGROUND: A reliable prediction of the causative agent of community-acquired pneumonia (CAP) is not possible based on clinical features. Our aim was to test, whether the measurement of the expression of complement receptors or Fcγ receptors on neutrophils and monocytes would be a useful preliminary test to differentiate between bacterial and viral pneumonia. METHODS: Sixty-eight patients with CAP were studied prospectively. Thirteen patients had pneumococcal pneumonia; 13 patients, influenza A pneumonia; 5 patients, atypical pneumonia, and 37 patients, aetiologically undefined pneumonia. Leukocyte receptor expression was measured within 2 days of hospital admission. RESULTS: The mean expression of complement receptor 1 (CR1) on neutrophils was significantly higher in the patients with pneumococcal pneumonia than in those with influenza A pneumonia. The mean expression of CR1 was also significantly higher in aetiologically undefined pneumonia than in influenza A pneumonia, but there was no difference between pneumococcal and undefined pneumonia. CONCLUSION: Our results suggest that the expression of CR1 is higher in classical bacterial pneumonia than in viral pneumonia. Determination of the expression of CR1 may be of value as an additional rapid tool in the aetiological diagnosis, bacterial or viral infection, of CAP. These results are preliminary and more research is needed to assess the utility of this new method in the diagnostics of pneumonia

    Antiferromagnetism and p‐type conductivity of nonstoichiometric nickel oxide thin films

    Get PDF
    Plasma‐enhanced atomic layer deposition was used to grow non‐stoichiometric nickel oxide thin films with low impurity content, high crystalline quality, and p‐type conductivity. Despite the non‐stoichiometry, the films retained the antiferromagnetic property of NiO

    Identification of errors introduced during high throughput sequencing of the T cell receptor repertoire

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Recent advances in massively parallel sequencing have increased the depth at which T cell receptor (TCR) repertoires can be probed by >3log10, allowing for saturation sequencing of immune repertoires. The resolution of this sequencing is dependent on its accuracy, and direct assessments of the errors formed during high throughput repertoire analyses are limited.</p> <p>Results</p> <p>We analyzed 3 monoclonal TCR from TCR transgenic, Rag<sup>-/- </sup>mice using Illumina<sup>® </sup>sequencing. A total of 27 sequencing reactions were performed for each TCR using a trifurcating design in which samples were divided into 3 at significant processing junctures. More than 20 million complementarity determining region (CDR) 3 sequences were analyzed. Filtering for lower quality sequences diminished but did not eliminate sequence errors, which occurred within 1-6% of sequences. Erroneous sequences were pre-dominantly of correct length and contained single nucleotide substitutions. Rates of specific substitutions varied dramatically in a position-dependent manner. Four substitutions, all purine-pyrimidine transversions, predominated. Solid phase amplification and sequencing rather than liquid sample amplification and preparation appeared to be the primary sources of error. Analysis of polyclonal repertoires demonstrated the impact of error accumulation on data parameters.</p> <p>Conclusions</p> <p>Caution is needed in interpreting repertoire data due to potential contamination with mis-sequence reads. However, a high association of errors with phred score, high relatedness of erroneous sequences with the parental sequence, dominance of specific nt substitutions, and skewed ratio of forward to reverse reads among erroneous sequences indicate approaches to filter erroneous sequences from repertoire data sets.</p
    corecore