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Abstract

Energy spread distributions due to electronic energy-loss straggling and multiple
small-angle scattering of swift ions in matter are approximated by asymmetric Gaus-
sian functions consisting of two-piece normal distributions. These skewed energy
distributions approximate the distributions more accurately than the conventional
approximation by Gaussian functions. The results are compared to experimental
data and Monte-Carlo simulations using the MCERD code and are in good agree-
ment. The use of these skewed distributions allows to achieve a higher accuracy in
the computer simulation of ion beam analysis energy spectra.

1 Introduction

The slowing down of swift ions in matter is always associated with energy
spread due to energy-loss straggling [1] and multiple small-angle scattering
[2�4]. The quantitative evaluation of measured particle energy spectra ob-
tained by ion beam analysis (IBA) methods requires a precise computer sim-
ulation of these spectra, and several computer codes were developed for this
purpose [5,6]. The most popular are SIMNRA [7,8], RUMP [9], and NDF
[10]. All these codes approximate the energy spread distributions by Gaussian
functions. However, as has already been shown experimentally for energy-loss
straggling [11,12] and by Monte-Carlo simulations for multiple small-angle
scattering [13], these energy spread distributions are usually of non-Gaussian
shape and skewed.

An accurate calculation of the shape of electronic energy-loss straggling distri-
butions is possible within the framework of a general stopping and straggling
theory, such as the Bohr, Bethe, or Bloch theory [11,12,1]. This requires an ad-
ditional numerical convolution, which increases the computing time by about
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one order of magnitude: This is impractical due to computing time restrictions
in simulation codes, which are often used interactively. Another limitation is,
that the shape of the straggling distribution cannot be calculated if empirical
or semi-empirical stopping or straggling models (such as SRIM stopping pow-
ers [14] or Yang straggling [15]) are used, because these models provide only
information about one speci�c moment of the energy distribution: A stopping
power model gives the mean energy loss and mean energy, a straggling model
the variance of the straggling. But it is usually impossible to get information
about higher moments (such as the skewness and kurtosis) from such semi-
empirical models. Because these models often provide a better accuracy than
a general stopping and straggling theory, such semi-empirical models are often
used in practice.

The available analytical theory of multiple small-angle scattering [2�4] intrin-
sically assumes symmetry of the angular and energy spread distributions and
does not provide information about their skew. Monte-Carlo simulation codes,
such as MCERD [16] and CORTEO [17], allow a precise calculation of multi-
ple scattering energy distributions, but these codes are slower by three to four
orders of magnitude than the above mentioned single scattering codes.

The di�erent energy spread distributions relevant for IBA (electronic energy-
loss straggling, geometrical straggling, multiple scattering, energy spread due
to porosity) can be approximated with su�cient accuracy by two-piece nor-
mal distributions (TPNDs). This slows down calculations only marginally and
provides energy distributions with correct mean value, variance and third mo-
ment, thus resulting in higher accuracy in spectrum simulation. From the
di�erent classes of skewed Gaussian-type functions (Gram-Charlier expansion
with linear term [18, section 3.15.8], skew-normal distribution [19], and other),
the TPND has been selected due to its good compatibility with the calcula-
tional schemes for IBA.

2 The two-piece normal distribution (TPND)

The two-piece normal distribution (TPND) (sometimes called binormal dis-
tribution or joined half-Gaussian) f(x) is de�ned by

f(x) =


A exp

(
− (x−x0)2

2σ2
1

)
if x ≤ x0

A exp
(
− (x−x0)2

2σ2
2

)
if x > x0

(1)

x0 is the mode of the distribution, σ1 and σ2 are the standard deviations
towards lower and higher values. A is a normalization factor. The half widths
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at half maximum (HWHMs) towards lower and higher values, h1 and h2, are
connected to the corresponding standard deviations through

hi =
√

2 ln 2σi, (2)

where i is either 1 or 2.

The moments of a TPND can be found for example in [20]. The mean value
F =

∫
f(x)x dx is given by

F = x0 +

√
2

π
(σ2 − σ1) . (3)

The variance V =
∫
f(x) (x− F )2 dx is

V = σ1σ2 +
(

1− 2

π

)
(σ2 − σ1)

2 (4)

The third central moment M =
∫
f(x) (x− F )3 dx is

M =

√
2

π
σ1σ2 (σ2 − σ1) +

√
2

π

(
4

π
− 1

)
(σ2 − σ1)

3 (5)

≈
√

2

π
σ1σ2 (σ2 − σ1) for σ1 ≈ σ2. (6)

For not too strongly skewed distributions, i.e. if the di�erence between σ1 and
σ2 is below about 30%, x0, σ1 and σ2 can be calculated analytically for given
F , V and M :

σ1 =−β
2

+

√
β2

4
− aβ2 + V (7)

σ2 =
β

2
+

√
β2

4
− aβ2 + V (8)

x0 =F − M

V
(9)

with the abbreviations

a = 1− 2

π
≈ 0.3634 (10)
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and

β =

√
π

2

M

V
. (11)

Eqs. 7 and 8 are deduced by using eq. 6 instead of eq. 5. For σ2 = (1 + δ)σ1 a
term of the order 1/3 δ3 is neglected.

The convolution of two TPNDs is, in general, not a TPND. The mean value
F , variance V and third moment M are additive for a convolution. The con-
volution of a TPND f1 with moments F1, V1 and M1 and a TPND f2 with
moments F2, V2 and M2 results in a function f with moments

F =F1 + F2 (12)

V =V1 + V2

M =M1 +M2.

For not too large asymmetries (with the di�erence between σ1 and σ2 being
less than about 50%), the convolution of two TPNDs is very close to a TPND,
and f can be approximated by a TPND with moments F , V and M . The
parameters of this TPND are then given by eqs. 7, 8 and 9.

3 Asymmetry parameter of arbitrary distributions

A possible measure of the skew of a distribution is its third standardized mo-
ment, the skewness γ = M/V 3/2. However, the skewness can be derived only
with large errors from experimental data or from data obtained by Monte-
Carlo computer simulations due to the large in�uence of small �uctuations
in the wings of the distributions. Some textbooks generally discourage to use
the skewness for experimental data [21]. Moreover, angular and energy distri-
butions due to multiple small-angle scattering have in�nite variance and an
unde�ned third moment [2], so that the skew of these distributions cannot be
measured by γ. The problem of in�nite variance was overcome in [2] by using
the full width at half maximum (FWHM) instead of using the variance V .
Following this way, we introduce the asymmetry parameter α as a measure of
the skew of a distribution, with

α =
h2 − h1

h1 + h2

. (13)
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h2 is the half width at half maximum (HWHM) towards higher values, i.e.
the distance between the value at which the distribution has decreased to its
half maximum and the mode. h1 is the HWHM towards low values. α can
be determined for any unimodal distribution, even if V or M are in�nite or
unde�ned, and can be determined with su�cient accuracy for experimental or
Monte-Carlo data. Consequently we use the FWHM instead of the variance
and the asymmetry parameter α instead of the skewness γ for all comparisons
to experimental or Monte-Carlo data.

4 Computer simulations

SIMNRA is a simulation program for RBS, ERD and NRA energy spectra
[7,8,22]. Version 6.40 was used. SRIM 2003 stopping powers [14] were used for
comparison to experimental data, ZBL electronic stopping powers [23] were
used for comparison to MCERD.

MCERD is a TRIM-like Monte Carlo (MC) code in binary collision approxima-
tion [16,24]. ZBL electronic stopping powers [23] and the universal interaction
potential were used. Electronic energy loss straggling was switched o�.

5 Electronic energy-loss straggling

For small energy losses the energy distributions of slowing-down ions in matter
are non-Gaussian with long tails towards low energies [25]. For larger energy
losses the increasing number of statistically independent collisions tends to
draw the energy distributions near to a Gaussian distribution. The energy
distributions are typically almost Gaussian for energy losses in the range of
10�30% of the primary energy, and their widths can be described by the Bohr
theory [26], but have to be corrected for electron binding [27] and charge-
state �uctuations [15] in order to achieve a su�cient accuracy. For energy
losses exceeding about 30% of the primary energy the widths and shapes
of the energy distributions are determined by non-stochastic broadening or
squeezing due to the shape of the stopping power [11,12,28,29].

As was already shown in [11], the �rst three moments are su�cient for an
accurate approximation of the energy-loss distributions if the energy-loss is not
too small. We obtain the mean value from the energy loss due to the stopping
power [30,31,23,32,14] and the variance from a straggling theory, such as [15].
As third moment we use nonrelativistic free Coulomb scattering [1, chapter
8.11]. Propagation of the HWHM's in thick layers is taken approximately
into account by calculating the energy losses of the mode energy E0 and the
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energies E0 − h1 and E0 + h2 during a step ∆x. No information is available
about the third moment of charge state �uctuations [15]: These are assumed
to be Gaussian.

The Γ-distribution was proposed in [33] for modeling the shape of the energy-
loss distribution. However, because the Γ-distribution has only two adjustable
parameters (mean value and variance), the third moment cannot be adjusted
and will usually not coincide with the correct third moment of the distribution:
The method proposed in [33] therefore generally will not approximate correctly
the energy-loss distribution.

The straggling of 19.68 MeV protons in aluminum is shown in Fig. 1. The ex-
perimental data were digitized from [29, Fig. 3], their half widths and asymme-
try parameters were obtained by �tting. At this high incident energy multiple
scattering is negligible, so that the shape of the energy distributions is de-
termined by electronic energy-loss straggling only. The incident beam energy
spread was 40 keV FWHM [29] and is assumed to be Gaussian. The calcu-
lated half-widths of the energy distributions are in excellent agreement with
the measurements. Bohr straggling describes the half-widths accurately at en-
ergies above about 15.5 MeV, i.e. for energy losses below about 20% of the
primary energy. At larger energy losses the half-widths are larger than Bohr
straggling due to straggling propagation. The asymmetry parameter, as shown
in Fig. 1 bottom, is also in very good agreement with the experimental val-
ues. At very large energy losses (in depths above about 0.5 g/cm2) the model
somewhat underestimates the asymmetry.

The measured energy distributions of 19.68 MeV protons after traversing
0.2675 g/cm2 and 0.497 g/cm2 aluminum are shown in Fig. 2. The energy
distributions are well approximated by the TPNDs. The approximation by
Gaussian energy distributions gives the correct widths (FWHMs) of the dis-
tributions, but the shape is not as well reproduced.

6 Multiple scattering

Szilágyi et al. [2] and Amsel et al. [4] have developed an analytical theory of
multiple small angle scattering, which has been implemented in the computer
codes DEPTH [2] and SIMNRA [7,13]. This analytical theory intrinsically
assumes symmetry of all angular and energy spread distributions, which are
approximated by (symmetric) Pearson VII distributions. The theory also ne-
glects energy transfer to target atoms, i.e. nuclear straggling [13]. As has been
already shown by comparison to Monte-Carlo simulation calculations [13],
this theory correctly predicts the shape and FWHM of angular spread distri-
butions: These are (almost) symmetric until large energy losses and can be
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described with su�cient accuracy by Pearson VII distributions. This theory
also predicts the FWHM of energy spread distributions due to multiple scat-
tering with su�cient accuracy [13]. It, however, does not describe correctly
the shape of energy spread distributions: These are not symmetric, but al-
ways skewed towards low energies [13]. This skewness has two main reasons:
Path length di�erences of particles scattered to di�erent sides and nuclear
straggling.

The in�uence of path length di�erences is shown schematically in Fig. 3: At
oblique incidence particles scattered to one side (trajectory A) on average have
a shorter total path length (and corresponding energy loss) until they reach a
speci�c depth d than particles scattered to the other side (trajectory B). The
path length lA for trajectory A is given by lA = d/ cos(α−∆ε/2), with α the
angle of incidence and ∆ε the chord angle (see Fig. 3). The path length lB
for trajectory B is given by lB = d/ cos(α+ ∆ε/2). For identical chord angles
to both sides this results in an asymmetric distribution of path lengths and
a corresponding asymmetric energy distribution. Path length di�erences play
especially a role at grazing incidence and for heavy target elements.

Multiple scattering of 2 MeV 4He in Au at 60◦ angle of incidence, as calcu-
lated with the Monte-Carlo code MCERD and by SIMNRA, is shown in Fig. 4.
The widths of the angular distributions (Fig. 4 top) are in excellent agreement
between both codes. The widths of the energy spread distributions (Fig. 4 mid-
dle) are in excellent agreement until a depth of about 500 nm. At larger depths
SIMNRA overestimates the width. The asymmetry parameter α (Fig. 4 mid-
dle, see eq. 13 for the de�nition of α) is in agreement between MCERD and
SIMNRA within the error bars. The large error bars for the MCERD data are
mainly due to the �t inaccuracy for the position of the mode of the energy
distributions, which has a large in�uence on the determination of α. The calcu-
lated energy distributions in depths of 100 nm, 300 nm and 500 nm are shown
in Fig 5. At small energy losses (100 nm) the distribution is almost symmetric
with tails towards lower and higher energies. These tails are characteristic for
multiple scattering [4] and cannot be described by Gaussian-type functions.
At larger energy losses (300 nm and 500 nm) the distributions get more and
more asymmetric. The high-energy parts of the distributions approach a Gaus-
sian distribution, while the low-energy parts develop broad tails extending to
very low energies. The body of these distributions can be well described by a
TPND, which gives a better approximation to the Monte-Carlo results than
a Gaussian. The low-energy tail is mainly due to energy transfer to target
atoms, i.e. nuclear straggling. Energy transfer to target atoms is neglected in
the Szilágyi/Amsel theory of multiple scattering [2,4], and nuclear straggling
at moderate energy losses is so strongly skewed that it cannot be described by
a skewed Gaussian-type function. A successful description of this low-energy
tail therefore would require an additional convolution, which is very costly in
terms of computing time. This is especially important for heavy ions, where
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the nuclear energy-loss straggling contribution may be large and cannot be
approximated by any skewed Gaussian type of function.

7 Conclusions

The energy spread distributions due to electronic energy-loss straggling and
multiple small-angle scattering are approximated by asymmetric Gaussian
functions consisting of two-piece normal distributions. These skewed energy
distribution have been implemented in the SIMNRA code version 6.40 and
higher. The results are compared to existing experimental data and Monte-
Carlo simulations using the MCERD code and are in good agreement for light
ions, such as protons and helium ions. The application of these skewed distri-
butions o�ers an improved accuracy in spectrum simulation.
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Fig. 1. Straggling of 19.68 MeV protons in aluminum. Top: Mode energy and width
(FWHM) of the straggling distributions. Bottom: Asymmetry parameter (see eq. 13)
of the straggling distributions. Experimental data from [29]. Solid lines: 40 keV
Gaussian energy spread of incident beam; Dashed lines: Without energy spread of
incident beam.
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0.497 g/cm2 aluminum. Dots: Experimental data from [29]; Solid line: SIMNRA
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Fig. 3. Schematic representation of multiple scattering at oblique incidence. Depth
d and angle of incidence α. Trajectories A and B are assumed to have chord angles
of ∓ε/2, with the FWHM of the chord angle distribution ∆ε.
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Fig. 4. Multiple scattering of 2 MeV 4He in gold at 60◦ angle of incidence. Top:
FWHMs of the angular spread distribution ∆Φ and the chord angle distribution ∆ε;
middle: FWHM of the energy spread distribution; bottom: Asymmetry parameter
α of the energy spread distribution. Solid dots: Calculation with the Monte-Carlo
code MCERD; lines: Calculation with SIMNRA. The MDEPTH calculation for the
angular spread distribution coincides with the SIMNRA result.
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angle of incidence. in depths of 100 nm, 300 nm and 500 nm. Histograms: Calculation
with the Monte-Carlo code MCERD; dashed lines: Calculation with SIMNRA as-
suming a Gaussian shape of the distributions; solid lines: Calculation with SIMNRA
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