651 research outputs found

    Crustal Structure in the Southern Apennines from Teleseismic Receiver Functions

    Get PDF
    While the upper structure of the Southern Apennines is known, lack of control on the deep structure allows competing thin-skin and tick-skin models of the orogen. In thin-skin models the detachment decouples a stack of rootless nappes from the basement. In the tick-skin models, besement is involved in the most recent phase of thrusting. To examine crustal structure, we use teleseismic data from the CAT/SCAN array in southern Italy. We use receiver functions (RF) processed into a Common Conversion Point (CCP) stack to generate images of the crust. Interpretation and correlation to geological structure is done using inversions of individual station RFs. We focus on a shallow discontinuity where P-to-S conversions occur. In the foreland, it corresponds to velocity jumps between carbonate and clastic strata with basement. A similar interpretation for the Apennines provides the most parsimonious explanation and supports a tick-skin interpretation. In a thick-skin reconstruction, the amount of shortening is much smaller than for a thin-skin model. This implies considerably less Plio-Pleistocene shortening across the Apennines and suggests an E-SE motion of the Calabrian Arc subparallel to the southern Apennines rather than a radial expansion of the Arc

    Illumination of the Crustal Structure in the Southern Apennines using Teleseismic Receiver Functions, CAT/SCAN Project

    Get PDF
    Field geology, well data and seismic imaging have illuminated the upper crustal structure of the Southern Apennines. However, lack of control of the deep structure allows viable competing thin-skin and thick-skin models of the orogen. In thin-skin models the detachment decouples a stack of rootless nappes from the basement. In thick-skin models, basement is involved in the most recent phase of thrusting. To examine the deep crustal structure, we use the teleseismic recordings from the CAT/SCAN array, deployed in southern Italy from Dec. 2003-Oct. 2005. We use receiver functions processed into a Common Conversion Point stack to generate images of the crust. We image three main westward-dipping seismic-velocity discontinuities where P-to-S conversions occur. They correspond to velocity jumps at the Moho, the upper-lower crust boundary and sedimentary interfaces resulting from the contrast between clastic and carbonate strata with basement. The CCP image matches features from both thin-skin and thick skin model. The lateral continuity of the converters favors thin skin, but consistent interpretation across the image favors the thick skin. Overall, the results provide a better fit to the thick-skin interpretation. This suggests a change in structural style as the collision with Apulia halted motion. This model also implies considerably less Plio-Pleistocene shortening across the Apennines and a SE motion of the Calabrian Arc subparallel to the southern Apennines rather than a radial expansion of the Arc

    The COVID-19 pandemic as a window of opportunity for more sustainable and circular supply chains

    Get PDF
    The COVID-19 pandemic is a microcosm for future challenges and crises. The greatest of these challenges is the climate crisis and the potential collapse of our Earth system. However, crises may also provide opportunities to transition to more sustainable futures. In our study, we qualitatively analyze statements of a heterogeneous group of 46 experts from academia, industry, government, and organized civil society to explore inasmuch experts perceived the pandemic as a window of opportunity for more sustainable supply chains (SCs) and what they consider opportunities, challenges, and necessary actions for more sustainable circular SCs. Our study contributes to current and future studies on the opportunities in times of crisis and the actions needed to overcome SCs vulnerabilities, thereby increasing the resiliency, circularity, and sustainability of SCs

    Boson gas in a periodic array of tubes

    Full text link
    We report the thermodynamic properties of an ideal boson gas confined in an infinite periodic array of channels modeled by two, mutually perpendicular, Kronig-Penney delta-potentials. The particle's motion is hindered in the x-y directions, allowing tunneling of particles through the walls, while no confinement along the z direction is considered. It is shown that there exists a finite Bose- Einstein condensation (BEC) critical temperature Tc that decreases monotonically from the 3D ideal boson gas (IBG) value T0T_{0} as the strength of confinement P0P_{0} is increased while keeping the channel's cross section, axaya_{x}a_{y} constant. In contrast, Tc is a non-monotonic function of the cross-section area for fixed P0P_{0}. In addition to the BEC cusp, the specific heat exhibits a set of maxima and minima. The minimum located at the highest temperature is a clear signal of the confinement effect which occurs when the boson wavelength is twice the cross-section side size. This confinement is amplified when the wall strength is increased until a dimensional crossover from 3D to 1D is produced. Some of these features in the specific heat obtained from this simple model can be related, qualitatively, to at least two different experimental situations: 4^4He adsorbed within the interstitial channels of a bundle of carbon nanotubes and superconductor-multistrand-wires Nb3_{3}Sn.Comment: 9 pages, 10 figures, submitte

    Comparison of the benefits of cochlear implantation versus contra-lateral routing of signal hearing aids in adult patients with single-sided deafness: study protocol for a prospective within-subject longitudinal trial

    Get PDF
    Background Individuals with a unilateral severe-to-profound hearing loss, or single-sided deafness, report difficulty with listening in many everyday situations despite having access to well-preserved acoustic hearing in one ear. The standard of care for single-sided deafness available on the UK National Health Service is a contra-lateral routing of signals hearing aid which transfers sounds from the impaired ear to the non-impaired ear. This hearing aid has been found to improve speech understanding in noise when the signal-to-noise ratio is more favourable at the impaired ear than the non-impaired ear. However, the indiscriminate routing of signals to a single ear can have detrimental effects when interfering sounds are located on the side of the impaired ear. Recent published evidence has suggested that cochlear implantation in individuals with a single-sided deafness can restore access to the binaural cues which underpin the ability to localise sounds and segregate speech from other interfering sounds. Methods/Design The current trial was designed to assess the efficacy of cochlear implantation compared to a contra-lateral routing of signals hearing aid in restoring binaural hearing in adults with acquired single-sided deafness. Patients are assessed at baseline and after receiving a contra-lateral routing of signals hearing aid. A cochlear implant is then provided to those patients who do not receive sufficient benefit from the hearing aid. This within-subject longitudinal design reflects the expected care pathway should cochlear implantation be provided for single-sided deafness on the UK National Health Service. The primary endpoints are measures of binaural hearing at baseline, after provision of a contra-lateral routing of signals hearing aid, and after cochlear implantation. Binaural hearing is assessed in terms of the accuracy with which sounds are localised and speech is perceived in background noise. The trial is also designed to measure the impact of the interventions on hearing- and health-related quality of life. Discussion This multi-centre trial was designed to provide evidence for the efficacy of cochlear implantation compared to the contra-lateral routing of signals. A purpose-built sound presentation system and established measurement techniques will provide reliable and precise measures of binaural hearing. Trial registration Current Controlled Trials http://www.controlled-trials.com/ISRCTN33301739 (05/JUL/2013

    Data Sharing and Research on Peer Review: A Call to Action

    Get PDF
    While recent surveys show that most stakeholders recognise the importance of peer review to the publication process, there is a lack of systematic research on the topic. In a period of hyper-competition for resources, with perverse incentives that lead to academic capitalism and a \u201cpublish or perish\u201d mentality, the lack of robust and cumulative research on approaches, models and practices of peer review can slow down efforts towards fostering research integrity and the credibility of scholarly communication. A major challenge in studying peer review systematically is the lack of available data. While data sharing in scientific research has made relevant progress in certain fields, the lack of infrastructures to promote the sharing of peer review data among publishers, journals and academic scholars, the challenges posed by privacy and data protection legislation, and the perceived lack of incentives for publishers, learned societies and journals to share data, have all hampered efforts in this important domain. While public authorities, learned societies and publishers may face different priorities, incentives and obstacles regarding data sharing, the time has come to call to action all stakeholders who play a part in this field. In this paper, we argue that an infrastructure for data sharing is needed to stimulate independent, collaborative, public research on peer review and we suggest measures and initiatives to set up a collaborative effort towards this goal

    Unlock ways to share data on peer review

    Get PDF
    Peer review is the defining feature of scholarly communication. In a 2018 survey of more than 11,000 researchers, 98% said that they considered peer review important or extremely important for ensuring the quality and integrity of scholarly communication. Indeed, now that the Internet and social media have assumed journals\u2019 original role of dissemination, a journal\u2019s main function is curation. Both the public and the scientific community trust peer review to uphold shared values of rigour, ethics, originality and analysis by improving publications and filtering out weak or errant ones. Scholarly communities rely on peer review to establish common knowledge and credit
    corecore