7,976 research outputs found

    S wave velocity structure below central Mexico using high-resolution surface wave tomography

    Get PDF
    Shear wave velocity of the crust below central Mexico is estimated using surface wave dispersion measurements from regional earthquakes recorded on a dense, 500 km long linear seismic network. Vertical components of regional records from 90 well-located earthquakes were used to compute Rayleigh-wave group-velocity dispersion curves. A tomographic inversion, with high resolution in a zone close to the array, obtained for periods between 5 and 50 s reveals significant differences relative to a reference model, especially at larger periods (>30 s). A 2-D S wave velocity model is obtained from the inversion of local dispersion curves that were reconstructed from the tomographic solutions. The results show large differences, especially in the lower crust, among back-arc, volcanic arc, and fore-arc regions; they also show a well-resolved low-velocity zone just below the active part of the Trans Mexican Volcanic Belt (TMVB) suggesting the presence of a mantle wedge. Low densities in the back arc, inferred from the low shear wave velocities, can provide isostatic support for the TMVB

    Suzaku Reveals Helium-burning Products in the X-ray Emitting Planetary Nebula BD+303639

    Get PDF
    BD+303639, the brightest planetary nebula at X-ray energies, was observed with Suzaku, an X-ray observatory launched on 2005 July 10. Using the X-ray Imaging Spectrometer, the K-lines from C VI, O VII, and O VIII were resolved for the first time, and C/O, N/O, and Ne/O abundance ratios determined. The C/O and Ne/O abundance ratios exceed the solar value by a factor of at least 30 and 5, respectively. These results indicate that the X-rays are emitted mainly by helium shell-burning products.Comment: 12 pages, 4 figures, accepted for publication in The Astrophysical Journal Letter

    Stacking Gravitational Wave Signals from Soft Gamma Repeater Bursts

    Full text link
    Soft gamma repeaters (SGRs) have unique properties that make them intriguing targets for gravitational wave (GW) searches. They are nearby, their burst emission mechanism may involve neutron star crust fractures and excitation of quasi-normal modes, and they burst repeatedly and sometimes spectacularly. A recent LIGO search for transient GW from these sources placed upper limits on a set of almost 200 individual SGR bursts. These limits were within the theoretically predicted range of some models. We present a new search strategy which builds upon the method used there by "stacking" potential GW signals from multiple SGR bursts. We assume that variation in the time difference between burst electromagnetic emission and burst GW emission is small relative to the GW signal duration, and we time-align GW excess power time-frequency tilings containing individual burst triggers to their corresponding electromagnetic emissions. Using Monte Carlo simulations, we confirm that gains in GW energy sensitivity of N^{1/2} are possible, where N is the number of stacked SGR bursts. Estimated sensitivities for a mock search for gravitational waves from the 2006 March 29 storm from SGR 1900+14 are also presented, for two GW emission models, "fluence-weighted" and "flat" (unweighted).Comment: 17 pages, 16 figures, submitted to PR

    On the infimum attained by a reflected L\'evy process

    Get PDF
    This paper considers a L\'evy-driven queue (i.e., a L\'evy process reflected at 0), and focuses on the distribution of M(t)M(t), that is, the minimal value attained in an interval of length tt (where it is assumed that the queue is in stationarity at the beginning of the interval). The first contribution is an explicit characterization of this distribution, in terms of Laplace transforms, for spectrally one-sided L\'evy processes (i.e., either only positive jumps or only negative jumps). The second contribution concerns the asymptotics of \prob{M(T_u)> u} (for different classes of functions TuT_u and uu large); here we have to distinguish between heavy-tailed and light-tailed scenarios

    A bright nanowire single photon source based on SiV centers in diamond

    Get PDF
    The practical implementation of many quantum technologies relies on the development of robust and bright single photon sources that operate at room temperature. The negatively charged silicon-vacancy (SiV-) color center in diamond is a possible candidate for such a single photon source. However, due to the high refraction index mismatch to air, color centers in diamond typically exhibit low photon out-coupling. An additional shortcoming is due to the random localization of native defects in the diamond sample. Here we demonstrate deterministic implantation of Si ions with high conversion efficiency to single SiV- centers, targeted to fabricated nanowires. The co-localization of single SiV- centers with the nanostructures yields a ten times higher light coupling efficiency than for single SiV- centers in bulk diamond. This enhanced photon out-coupling, together with the intrinsic scalability of the SiV- creation method, enables a new class of devices for integrated photonics and quantum science.Comment: 15 pages, 5 figure

    Nano-Hall sensors with granular Co-C

    Full text link
    We analyzed the performance of Hall sensors with different Co-C ratios, deposited directly in nano-structured form, using Co2(CO)8Co_2(CO)_8 gas molecules, by focused electron or ion beam induced deposition. Due to the enhanced inter-grain scattering in these granular wires, the Extraordinary Hall Effect can be increased by two orders of magnitude with respect to pure Co, up to a current sensitivity of 1Ω/T1 \Omega/T. We show that the best magnetic field resolution at room temperature is obtained for Co ratios between 60% and 70% and is better than 1μT/Hz1/21 \mu T/Hz^{1/2}. For an active area of the sensor of 200×200nm2200 \times 200 nm^2, the room temperature magnetic flux resolution is ϕmin=2×105ϕ0\phi_{min} = 2\times10^{-5}\phi_0, in the thermal noise frequency range, i.e. above 100 kHz.Comment: 5 pages, 4 figure

    Hurricanes affect diversification among individual life courses of a primate population

    Get PDF
    1. Extreme climatic events may influence individual- level variability in phenotypes, survival and reproduction, and thereby drive the pace of evolution. Climate mod -els predict increases in the frequency of intense hurricanes, but no study has measured their impact on individual life courses within animal populations. 2. We used 45 years of demographic data of rhesus macaques to quantify the influ- ence of major hurricanes on reproductive life courses using multiple metrics of dynamic heterogeneity accounting for life course variability and life-history trait variances. 3. To reduce intraspecific competition, individuals may explore new reproductive stages during years of major hurricanes, resulting in higher temporal variation in reproductive trajectories. Alternatively, individuals may opt for a single optimal life-history strategy due to trade- offs between survival and reproduction. 4. Our results show that heterogeneity in reproductive life courses increased by 4% during years of major hurricanes, despite a 2% reduction in the asymptotic growth rate due to an average decrease in mean fertility and survival by that is, shortened life courses and reduced reproductive output. In agreement with this, the population is expected to achieve stable population dynamics faster after being perturbed by a hurricane (p = 1.512 ; 95% CI: 1.488, 1.538), relative to ordi- nary years (p = 1.482; 1.475, 1.490). 5. Our work suggests that natural disasters force individuals into new demographic roles to potentially reduce competition during unfavourable environments where mean reproduction and survival are compromised. Variance in lifetime reproduc- tive success and longevity are differently affected by hurricanes, and such vari- ability is mostly driven by survival

    On the possible sources of gravitational wave bursts detectable today

    Full text link
    We discuss the possibility that galactic gravitational wave sources might give burst signals at a rate of several events per year, detectable by state-of-the-art detectors. We are stimulated by the results of the data collected by the EXPLORER and NAUTILUS bar detectors in the 2001 run, which suggest an excess of coincidences between the two detectors, when the resonant bars are orthogonal to the galactic plane. Signals due to the coalescence of galactic compact binaries fulfill the energy requirements but are problematic for lack of known candidates with the necessary merging rate. We examine the limits imposed by galactic dynamics on the mass loss of the Galaxy due to GW emission, and we use them to put constraints also on the GW radiation from exotic objects, like binaries made of primordial black holes. We discuss the possibility that the events are due to GW bursts coming repeatedly from a single or a few compact sources. We examine different possible realizations of this idea, such as accreting neutron stars, strange quark stars, and the highly magnetized neutron stars (``magnetars'') introduced to explain Soft Gamma Repeaters. Various possibilities are excluded or appear very unlikely, while others at present cannot be excluded.Comment: 24 pages, 20 figure
    corecore