1,237 research outputs found
Coherent Optical Spectroscopy Of Molecules And Molecular Beams
This paper presents our recent work on coherent optical spectroscopy of molecules and molecular beams. The theory for these nonlinear optical effects is summarized and related to the measurements in the gas phase and in the condensed phase. Finally, we discuss the importance of these methods, which disentangle the inhomogeneous optical resonances, in understanding nonradiative and optical dephasing processes
Compared effects of inhibition and exogenous administration of hydrogen sulphide in ischaemia-reperfusion injury
INTRODUCTION: Haemorrhagic shock is associated with an inflammatory response consecutive to ischaemia-reperfusion (I/R) that leads to cardiovascular failure and organ injury. The role of and the timing of administration of hydrogen sulphide (H2S) remain uncertain. Vascular effects of H2S are mainly mediated through K+ATP-channel activation. Herein, we compared the effects of D,L-propargylglycine (PAG), an inhibitor of H2S production, as well as sodium hydrosulphide (NaHS), an H2S donor, on haemodynamics, vascular reactivity and cellular pathways in a rat model of I/R. We also compared the haemodynamic effects of NaHS administered before and 10 minutes after reperfusion. METHODS: Mechanically ventilated and instrumented rats were bled during 60 minutes in order to maintain mean arterial pressure at 40 +/- 2 mmHg. Ten minutes prior to retransfusion, rats randomly received either an intravenous bolus of NaHS (0.2 mg/kg) or vehicle (0.9% NaCl) or PAG (50 mg/kg). PNU, a pore-forming receptor inhibitor of K+ATP channels, was used to assess the role of K+ATP channels. RESULTS: Shock and I/R induced a decrease in mean arterial pressure, lactic acidosis and ex vivo vascular hyporeactivity, which were attenuated by NaHS administered before reperfusion and PNU but not by PAG and NaHS administered 10 minutes after reperfusion. NaHS also prevented aortic inducible nitric oxide synthase expression and nitric oxide production while increasing Akt and endothelial nitric oxide synthase phosphorylation. NaHS reduced JNK activity and p-P38/P38 activation, suggesting a decrease in endothelial cell activation without variation in ERK phosphorylation. PNU + NaHS increased mean arterial pressure when compared with NaHS or PNU alone, suggesting a dual effect of NaHS on vascular reactivity. CONCLUSION: NaHS when given before reperfusion protects against the effects of haemorrhage-induced I/R by acting primarily through a decrease in both proinflammatory cytokines and inducible nitric oxide synthase expression and an upregulation of the Akt/endothelial nitric oxide synthase pathway
How to determine a quantum state by measurements: The Pauli problem for a particle with arbitrary potential
The problem of reconstructing a pure quantum state ¿¿> from measurable quantities is considered for a particle moving in a one-dimensional potential V(x). Suppose that the position probability distribution ¿¿(x,t)¿2 has been measured at time t, and let it have M nodes. It is shown that after measuring the time evolved distribution at a short-time interval ¿t later, ¿¿(x,t+¿t)¿2, the set of wave functions compatible with these distributions is given by a smooth manifold M in Hilbert space. The manifold M is isomorphic to an M-dimensional torus, TM. Finally, M additional expectation values of appropriately chosen nonlocal operators fix the quantum state uniquely. The method used here is the analog of an approach that has been applied successfully to the corresponding problem for a spin system
Radiationless Relaxation in "Large" Molecules: Experimental Evidence for Preparation of True Molecular Eigenstates and Born-Oppenheimer States by a Coherent Light Source
Photon absorption and emission by molecules that undergo radiationless transitions are examined using the single modes of lasers having well-defined coherence properties. Contrary to the usual beliefs, where it is assumed that the molecule is prepared in a Born-Oppenheimer singlet state and then "crosses-over" to other states (vibrationally "hot" singlets and/or triplets), it is shown experimentally that the true eigenstates of the molecule can be prepared, even in "large" molecules, if the laser correlation time is relatively long and the molecular relaxation is made slow. On the other hand, lasers with short (psec) correlation time have yielded effectively the singlet Born-Oppenheimer state, which has a much shorter lifetime than the true eigenstates. Effects of magnetic fields and temperature are also reported. The former changes the amount of mixing amongst the Born-Oppenheimer states. The latter, on the other hand, swings the molecule from being "small" (i.e., sparse vibronic structure with long lifetimes) to being "large" (i.e., dense statistical distribution of levels) since the relaxation between levels is very effective at high temperatures. Finally, the results of this work show that the words fluorescence and phosphorescence in their strict meaning are misleading if the true eigenstates, which may contain both singlet and triplet character, are prepared
The role of the ubiquitination-proteasome pathway in breast cancer: Applying drugs that affect the ubiquitin-proteasome pathway to the therapy of breast cancer
The ubiquitin-proteasome pathway is responsible for most eukaryotic intracellular protein degradation. This pathway has been validated as a target for antineoplastic therapy using both in vitro and preclinical models of human malignancies, and is influenced as part of the mechanism of action of certain chemotherapeutic agents. Drugs whose primary action involves modulation of ubiquitin-proteasome activity, most notably the proteasome inhibitor PS-341, are currently being evaluated in clinical trials, and have already been found to have significant antitumor efficacy. On the basis of the known mechanisms by which these agents work, and the available clinical data, they would seem to be well suited for the treatment of breast neoplasms. Such drugs, alone and especially in combination with current chemotherapeutics, may well represent important advances in the therapy of patients with breast cancer
Thermal diffusion of supersonic solitons in an anharmonic chain of atoms
We study the non-equilibrium diffusion dynamics of supersonic lattice
solitons in a classical chain of atoms with nearest-neighbor interactions
coupled to a heat bath. As a specific example we choose an interaction with
cubic anharmonicity. The coupling between the system and a thermal bath with a
given temperature is made by adding noise, delta-correlated in time and space,
and damping to the set of discrete equations of motion. Working in the
continuum limit and changing to the sound velocity frame we derive a
Korteweg-de Vries equation with noise and damping. We apply a collective
coordinate approach which yields two stochastic ODEs which are solved
approximately by a perturbation analysis. This finally yields analytical
expressions for the variances of the soliton position and velocity. We perform
Langevin dynamics simulations for the original discrete system which fully
confirm the predictions of our analytical calculations, namely noise-induced
superdiffusive behavior which scales with the temperature and depends strongly
on the initial soliton velocity. A normal diffusion behavior is observed for
very low-energy solitons where the noise-induced phonons also make a
significant contribution to the soliton diffusion.Comment: Submitted to PRE. Changes made: New simulations with a different
method of soliton detection. The results and conclusions are not different
from previous version. New appendixes containing information about the system
energy and soliton profile
Exchange Rate Risk and Convergence to the Euro
This paper proposes a new monetary policy framework for effectively navigating the path
to adopting the euro. The proposed policy is based on relative inflation forecast targeting
and incorporates an ancillary target of declining exchange rate risk, which is suggested as
a key criterion for evaluating the currency stability. A model linking exchange rate
volatility to differentials over the euro zone in both inflation (target variable) and interest
rate (instrument variable) is proposed. The model is empirically tested for the Czech
Republic, Poland and Hungary, the selected new Member States of the EU that use direct
inflation targeting to guide their monetary policies. The empirical methodology is based
on the TARCH(p,q,r)-M model
Structure of the mirror nuclei Be and B in a microscopic cluster model
The structure of the mirror nuclei Be and B is studied in a
microscopic and three-cluster model
using a fully antisymmetrized 9-nucleon wave function. The two-nucleon
interaction includes central and spin-orbit components and the Coulomb
potential. The ground state of Be is obtained accurately with the
stochastic variational method, while several particle-unbound states of both
Be and B are investigated with the complex scaling method.The
calculation for Be supports the recent identification for the existence of
two broad states around 6.5 MeV, and predicts the and
states at about 4.5 MeV and 8 MeV, respectively. The
similarity of the calculated spectra of Be and B enables one to
identify unknown spins and parities of the B states. Available data on
electromagnetic moments and elastic electron scatterings are reproduced very
well. The enhancement of the 1 transition of the first excited state in
Be is well accounted for. The calculated density of Be is found to
reproduce the reaction cross section on a Carbon target. The analysis of the
beta decay of Li to Be clearly shows that the wave function of Be
must contain a small component that cannot be described by the simple model. This small component can be well accounted for by extending a
configuration space to include the distortion of the -particle to
and partitions.Comment: 24 page
Review of low-cost sensors for indoor air quality: Features and applications
Humans spend the majority of their time indoors, where they are potentially exposed to hazardous pollutants. Within this context, over the past few years, there has been an upsurge of low-cost sensors (LCS) for the measurement of indoor air pollutants, motivated both by recent technological advances and by increased awareness of indoor air quality (IAQ) and its potential negative health impacts. Although not meeting the performance requirements for reference regulatory-equivalent monitoring indoors, LCS can provide informative measurements, offering an opportunity for high-resolution monitoring, emission source identification, exposure mitigation and managing IAQ and energy efficiency, among others. This article discusses the strengths and limitations that LCS offer for applications in the field of IAQ monitoring; it provides an overview of existing sensor technologies and gives recommendations for different indoor applications, considering their performance in the complex indoor environment and discussing future trends
- …