14,449 research outputs found

    Ionization of atoms by few-cycle EUV laser pulses: carrier-envelope phase dependence of the intra-pulse interference effects

    Full text link
    We have investigated the ionization of the H atom by intense few-cycle laser pulses, in particular the intra-pulse interference effects, and their dependence on the carrier-envelope phase (CEP) of the laser pulse. In the final momentum distribution of the continuum electrons the imprint of two types of intra-pulse interference effects can be observed, namely the temporal and spatial interference. During the spatial interference electronic wave packets emitted at the same time, but following different paths interfere leading to an interference pattern measurable in the electron spectra. This can be also interpreted as the interference between a direct and a scattered wave, and the spatial interference pattern as the holographic mapping (HM) of the target. This HM pattern is strongly influenced by the carrier-envelope phase through the shape of the laser pulse. Here, we have studied how the shape of the HM pattern is modified by the CEP, and we have found an optimal CEP for the observation of HM

    Excitations and benchmark ensemble density functional theory for two electrons

    Full text link
    A new method for extracting ensemble Kohn-Sham potentials from accurate excited state densities is applied to a variety of two electron systems, exploring the behavior of exact ensemble density functional theory. The issue of separating the Hartree energy and the choice of degenerate eigenstates is explored. A new approximation, spin eigenstate Hartree-exchange (SEHX), is derived. Exact conditions that are proven include the signs of the correlation energy components, the virial theorem for both exchange and correlation, and the asymptotic behavior of the potential for small weights of the excited states. Many energy components are given as a function of the weights for two electrons in a one-dimensional flat box, in a box with a large barrier to create charge transfer excitations, in a three-dimensional harmonic well (Hooke's atom), and for the He atom singlet-triplet ensemble, singlet-triplet-singlet ensemble, and triplet bi-ensemble.Comment: 15 pages, supplemental material pd

    Investigation of the composition of the Luna 16 lunar sample

    Get PDF
    The concentrations of aluminum, manganese, sodium, chromium, iron, cobalt, and 12 rare earth elements were determined by neutron activation analysis using slow neutrons. Oxygen and silicon were determined using a fast neutron generator. Mossbauer spectroscopy was used to investigate iron compounds in Luna 16 regolith samples from the upper part of the core

    Operator algebra quantum homogeneous spaces of universal gauge groups

    Full text link
    In this paper, we quantize universal gauge groups such as SU(\infty), as well as their homogeneous spaces, in the sigma-C*-algebra setting. More precisely, we propose concise definitions of sigma-C*-quantum groups and sigma-C*-quantum homogeneous spaces and explain these concepts here. At the same time, we put these definitions in the mathematical context of countably compactly generated spaces as well as C*-compact quantum groups and homogeneous spaces. We also study the representable K-theory of these spaces and compute it for the quantum homogeneous spaces associated to the universal gauge group SU(\infty).Comment: 14 pages. Merged with [arXiv:1011.1073

    Extreme Supernova Models for the Superluminous Transient ASASSN-15lh

    Get PDF
    The recent discovery of the unprecedentedly superluminous transient ASASSN-15lh (or SN 2015L) with its UV-bright secondary peak challenges all the power-input models that have been proposed for superluminous supernovae. Here we examine some of the few viable interpretations of ASASSN-15lh in the context of a stellar explosion, involving combinations of one or more power inputs. We model the lightcurve of ASASSN-15lh with a hybrid model that includes contributions from magnetar spin-down energy and hydrogen-poor circumstellar interaction. We also investigate models of pure circumstellar interaction with a massive hydrogen-deficient shell and discuss the lack of interaction features in the observed spectra. We find that, as a supernova ASASSN-15lh can be best modeled by the energetic core-collapse of a ~40 Msun star interacting with a hydrogen-poor shell of ~20 Msun. The circumstellar shell and progenitor mass are consistent with a rapidly rotating pulsational pair-instability supernova progenitor as required for strong interaction following the final supernova explosion. Additional energy injection by a magnetar with initial period of 1-2 ms and magnetic field of 0.1-1 x 10^14 G may supply the excess luminosity required to overcome the deficit in single-component models, but this requires more fine-tuning and extreme parameters for the magnetar, as well as the assumption of efficient conversion of magnetar energy into radiation. We thus favor a single-input model where the reverse shock formed in a strong SN ejecta-CSM interaction following a very powerful core-collapse SN explosion can supply the luminosity needed to reproduce the late-time UV-bright plateau.Comment: 8 pages, 3 figure

    High-accuracy Penning trap mass measurements with stored and cooled exotic ions

    Full text link
    The technique of Penning trap mass spectrometry is briefly reviewed particularly in view of precision experiments on unstable nuclei, performed at different facilities worldwide. Selected examples of recent results emphasize the importance of high-precision mass measurements in various fields of physics

    Hydrodynamic limit of gradient exclusion processes with conductances

    Full text link
    Fix a strictly increasing right continuous with left limits function W: \bb R \to \bb R and a smooth function \Phi : [l,r] \to \bb R, defined on some interval [l,r][l,r] of \bb R, such that 0<b≀Ίâ€Č≀b−10<b \le \Phi'\le b^{-1}. We prove that the evolution, on the diffusive scale, of the empirical density of exclusion processes, with conductances given by WW, is described by the weak solutions of the non-linear differential equation ∂tρ=(d/dx)(d/dW)Ί(ρ)\partial_t \rho = (d/dx)(d/dW) \Phi(\rho). We derive some properties of the operator (d/dx)(d/dW)(d/dx)(d/dW) and prove uniqueness of weak solutions of the previous non-linear differential equation

    Four-jet angular distributions and color charge measurements: leading order versus next-to-leading order

    Get PDF
    We present the next-to-leading order perturbative QCD prediction to the four-jet angular distributions used by experimental collaborations at LEP for measuring the QCD color charge factors. We compare our results to ALEPH data corrected to parton level. We perform a leading order ``measurement'' of the QCD color factor ratios by fitting the leading order perturbative predictions to the next-to-leading order result. Our result shows that in an experimental analysis for measuring the color charge factors the use of the O(αs3\alpha_s^3) QCD predictions instead of the O(αs2\alpha_s^2) results may shift the center of the fit by a relative factor of 1+2\as in the TR/CFT_R/C_F direction.Comment: 14 pages, 10 tables, 5 figures, revtex, eps style
    • 

    corecore