1,756 research outputs found

    Palaeobiology, ecology, and distribution of stromatoporoid faunas in biostromes of the mid-Ludlow of Gotland

    Get PDF
    Six well exposed mid−Ludlow stromatoporoid−dominated reef biostromes in four localities from the Hemse Group in southeastern Gotland, Sweden comprise a stromatoporoid assemblage dominated by four species; Clathrodictyon mohicanum, “Stromatopora” bekkeri, Plectostroma scaniense, and Lophiostroma schmidtii. All biostromes investigated in this area (of approximately 30 km2) are interpreted to belong to a single faunal assemblage forming a dense accumulation of fossils that is probably the best exposed stromatoporoid−rich deposit of the Silurian. The results from this comprehensive study strengthen earlier interpretations of a combination of genetic and environmental control on growth−forms of the stromatoporoids. Growth styles are similar for stromatoporoids in all six biostromes. Differences in biostrome fabric are due to variations in the degree of disturbance by storms. The uniformity of facies and the widespread low−diversity fauna support the view that palaeoenvironmental conditions were similar across the area where these biostromes crop out, and promoted the extraordinary growth of stromatoporoids in this shallow shelf area

    TRANSPORT AND INSTALLATION OF CRYO-MAGNETS IN CERN'S LARGE HADRON COLLIDER TUNNEL

    Get PDF
    The arcs of the Large Hadron Collider (LHC) will contain around 1700 main superconducting dipoles and quadrupoles. The long and heavy magnets are supported on fragile composite support posts inside a cryostat to reduce the heat in-leak to the magnets' super fluid helium bath. The presence of fragile components and the need to avoid geometry changes make the cryo-magnets very difficult to handle and transport. The transport and installation of the LHC cryo-magnets in the LEP tunnels originally designed for smaller, lighter LEP magnets has required development of completely new handling solutions. The paper explains the constraints imposed by the cryo-magnet characteristics, the existing tunnel infrastructure and schedule considerations. The development and realisation of transport and handling solutions are described, starting from conceptual design, through manufacture and testing to the installation of the first cryo-magnet. Integration studies to verify and reserve space needed for manoeuvre and the preparation of the infrastructure for transport and installation operations are also presented. The paper includes conclusions and some of the lessons learned

    Performing heritage: the use of live 'actors' in heritage presentations

    Get PDF
    This paper investigates the phenomenon of 'living history' presentations of heritage, using live 'actors' to portray historical characters. Its aim is to discuss these presentations in the context of what may be understood as 'heritage', and of the nature of 'performance'. Four case studies of heritage sites, each important as a tourist attraction, have been selected for detailed study, together with a number of other examples of heritage performance. It is clear from the empirical work that different performance strategies are employed within the heritage industry and by individual 'actors'. Most of the performers take part as a leisure activity, and many do not consider themselves to be 'performing' at all. The greatest concern of participants lies in the degree of authenticity of the performance. Through 'living history', the 'actors' are drawn into an experience of heritage which has real meaning for them, and which may contribute both to a sense of identity and to an enhanced understanding of society, past and present. The popularity of such presentations with visitors also indicates that similar benefits are perceived by the 'audience'

    Remote Inspection, Measurement and Handling for LHC

    Get PDF
    Personnel access to the LHC tunnel will be restricted to varying extents during the life of the machine due to radiation, cryogenic and pressure hazards. The ability to carry out visual inspection, measurement and handling activities remotely during periods when the LHC tunnel is potentially hazardous offers advantages in terms of safety, accelerator down time, and costs. The first applications identified were remote measurement of radiation levels at the start of shut-down, remote geometrical survey measurements in the collimation regions, and remote visual inspection during pressure testing and initial machine cool-down. In addition, for remote handling operations, it will be necessary to be able to transmit several real-time video images from the tunnel to the control room. The paper describes the design, development and use of a remotely controlled vehicle to demonstrate the feasibility of meeting the above requirements in the LHC tunnel. Design choices are explained along with operating experience to-date and future development plans

    Can a single image processing algorithm work equally well across all phases of DCE-MRI?

    Full text link
    Image segmentation and registration are said to be challenging when applied to dynamic contrast enhanced MRI sequences (DCE-MRI). The contrast agent causes rapid changes in intensity in the region of interest and elsewhere, which can lead to false positive predictions for segmentation tasks and confound the image registration similarity metric. While it is widely assumed that contrast changes increase the difficulty of these tasks, to our knowledge no work has quantified these effects. In this paper we examine the effect of training with different ratios of contrast enhanced (CE) data on two popular tasks: segmentation with nnU-Net and Mask R-CNN and registration using VoxelMorph and VTN. We experimented further by strategically using the available datasets through pretraining and fine tuning with different splits of data. We found that to create a generalisable model, pretraining with CE data and fine tuning with non-CE data gave the best result. This interesting find could be expanded to other deep learning based image processing tasks with DCE-MRI and provide significant improvements to the models performance

    Gene Modification Strategies to Induce Tumor Immunity

    Get PDF
    The immune system provides an attractive option for use in cancer therapy. Our increasing understanding of the molecular events important in the generation of an effective immune response presents us with the opportunity to manipulate key genes to boost the immune response against cancer. Genetic modification is being employed to enhance a range of immune processes including antigen presentation, activation of specific T cells, and localization of immune effectors to tumors. In this review, we describe how many diverse cell types, including dendritic cells, T cells, and tumor cells, are being modified with a variety of genes, including those encoding antigens, cytokines, and chemokines, in order to enhance tumor immunity

    Millikelvin de Haas-van Alphen and magnetotransport studies of graphite

    Get PDF
    Copyright © 2011 American Physical SocietyRecent studies of the electronic properties of graphite have produced conflicting results regarding the positions of the different carrier types within the Brillouin zone, and the possible presence of Dirac fermions. In this paper we report a comprehensive study of the de Haas–van Alphen, Shubnikov–de Haas, and Hall effects in a sample of highly orientated pyrolytic graphite, at temperatures in the range 30 mK to 4 K and magnetic fields up to 12 T. The transport measurements confirm the Brillouin-zone locations of the different carrier types assigned by Schroeder, Dresselhaus and Javan Phys. Rev. Lett. 20 1292 (1968): electrons are at the K point, and holes are near the H points. We extract the cyclotron masses and scattering times for both carrier types from the temperature- and magnetic-field-dependences of the magneto-oscillations. Our results indicate that the holes experience stronger scattering and hence have lower mobility than the electrons. We utilize phase-frequency analysis and intercept analysis of the 1/B positions of magneto-oscillation extrema to identify the nature of the carriers in graphite, whether they are Dirac or normal (Schrödinger) fermions. These analyses indicate normal holes and electrons of indeterminate natur

    Earliest Triassic microbialites in the South China Block and other areas; controls on their growth and distribution

    Get PDF
    Earliest Triassic microbialites (ETMs) and inorganic carbonate crystal fans formed after the end-Permian mass extinction (ca. 251.4 Ma) within the basal Triassic Hindeodus parvus conodont zone. ETMs are distinguished from rarer, and more regional, subsequent Triassic microbialites. Large differences in ETMs between northern and southern areas of the South China block suggest geographic provinces, and ETMs are most abundant throughout the equatorial Tethys Ocean with further geographic variation. ETMs occur in shallow-marine shelves in a superanoxic stratified ocean and form the only widespread Phanerozoic microbialites with structures similar to those of the Cambro-Ordovician, and briefly after the latest Ordovician, Late Silurian and Late Devonian extinctions. ETMs disappeared long before the mid-Triassic biotic recovery, but it is not clear why, if they are interpreted as disaster taxa. In general, ETM occurrence suggests that microbially mediated calcification occurred where upwelled carbonate-rich anoxic waters mixed with warm aerated surface waters, forming regional dysoxia, so that extreme carbonate supersaturation and dysoxic conditions were both required for their growth. Long-term oceanic and atmospheric changes may have contributed to a trigger for ETM formation. In equatorial western Pangea, the earliest microbialites are late Early Triassic, but it is possible that ETMs could exist in western Pangea, if well-preserved earliest Triassic facies are discovered in future work
    • 

    corecore