85,772 research outputs found

    Design of serrate-semi-circular riblets with application to skin friction reduction on engineering surface

    Get PDF
    Drag reduction in wall-bounded flows can be achieved by the passive flow control technique through the application of bio-inspired riblet surfaces. This paper presents the innovative design of Serrate-Semi-Circular riblet surfaces particularly focusing on the intrinsic relationship between the riblet features and the turbulent boundary layer structure resulting from these surfaces in engineering applications. The available experimental facilities, instrumentation (i.e. hotwire) and measurement techniques (i.e. velocity spectra) have been employed to investigate the boundary layer velocity profiles and skin friction for flat plate and Serrate-Semi-Circular riblet surfaces. Both the simulation and experimental wind tunnel testing results show that the Serrate-Semi-Circular riblet surface can provide 7% drag reduction, which is better than other riblet configurations, such as V and U shaped ones

    Long-Distance Contributions to D^0-D^0bar Mixing Parameters

    Full text link
    Long-distance contributions to the D0D^0-Dˉ0\bar D^0 mixing parameters xx and yy are evaluated using latest data on hadronic D0D^0 decays. In particular, we take on two-body DPPD \to PP and VPVP decays to evaluate the contributions of two-body intermediate states because they account for 50\sim 50% of hadronic D0D^0 decays. Use of the diagrammatic approach has been made to estimate yet-observed decay modes. We find that yy is of order a few ×103\times 10^{-3} and xx of order 10310^{-3} from hadronic PPPP and VPVP modes. These are in good agreement with the latest direct measurement of D0D^0-Dˉ0\bar D^0 mixing parameters using the D0KSπ+πD^0 \to K_S \pi^+\pi^- and KSK+KK_S K^+ K^- decays by BaBar. We estimate the contribution to yy from the VVVV modes using the factorization model and comment on the single-particle resonance effects and contributions from other two-body modes involving even-parity states.Comment: 18 pages and 1 figure; footnotes and references added; to appear in Phys. Rev.

    UTB SOI SRAM cell stability under the influence of intrinsic parameter fluctuation

    Get PDF
    Intrinsic parameter fluctuations steadily increases with CMOS technology scaling. Around the 90nm technology node, such fluctuations will eliminate much of the available noise margin in SRAM based on conventional MOSFETs. Ultra thin body (UTB) SOI MOSFETs are expected to replace conventional MOSFETs for integrated memory applications due to superior electrostatic integrity and better resistant to some of the sources of intrinsic parameter fluctuations. To fully realise the performance benefits of UTB SOI based SRAM cells a statistical circuit simulation methodology which can fully capture intrinsic parameter fluctuation information into the compact model is developed. The impact on 6T SRAM static noise margin characteristics of discrete random dopants in the source/drain regions and body-thickness variations has been investigated for well scaled devices with physical channel length in the range of 10nm to 5nm. A comparison with the behaviour of a 6T SRAM based on a conventional 35nm MOSFET is also presented

    The Origin of Gamma-Rays from Globular Clusters

    Get PDF
    Fermi has detected gamma-ray emission from eight globular clusters. We suggest that the gamma-ray emission from globular clusters may result from the inverse Compton scattering between relativistic electrons/positrons in the pulsar wind of MSPs in the globular clusters and background soft photons including cosmic microwave/relic photons, background star lights in the clusters, the galactic infrared photons and the galactic star lights. We show that the gamma-ray spectrum from 47 Tuc can be explained equally well by upward scattering of either the relic photons, the galactic infrared photons or the galactic star lights whereas the gamma-ray spectra from other seven globular clusters are best fitted by the upward scattering of either the galactic infrared photons or the galactic star lights. We also find that the observed gamma-ray luminosity is correlated better with the combined factor of the encounter rate and the background soft photon energy density. Therefore the inverse Compton scattering may also contribute to the observed gamma-ray emission from globular clusters detected by Fermi in addition to the standard curvature radiation process. Furthermore, we find that the emission region of high energy photons from globular cluster produced by inverse Compton scattering is substantially larger than the core of globular cluster with a radius >10pc. The diffuse radio and X-rays emitted from globular clusters can also be produced by synchrotron radiation and inverse Compton scattering respectively. We suggest that future observations including radio, X-rays, and gamma-rays with energy higher than 10 GeV and better angular resolution can provide better constraints for the models.Comment: Accepted by ApJ, Comments may send to Prof. K.S. Cheng: [email protected]

    Impact of random dopant induced fluctuations on sub-15nm UTB SOI 6T SRAM cells

    Get PDF
    The CMOS scaling increases the impact of intrinsic parameter fluctuation on the yield and functionality of SRAM. A statistical circuit simulation framework which can fully capture intrinsic parameter fluctuation information into the compact model has been developed. The impact of discrete random dopants in the source and drain regions on 6T SRAM cells has been investigated for well scaled ultra thin body (UTB) SOI MOSFETs with physical channel length in the range of 10nm to 5nm

    The role of UV in crab spider signals: effects on perception by prey and predators

    Get PDF
    Australian crab spiders Thomisus spectabilis sit on the petals of flowers and ambush prey such as honeybees. White-coloured T. spectabilis reflect in the UV (UV+ spiders) and previous research has shown that their presence, curiously, attracts honeybees to daisies. We applied an UV-absorber (Parsol®) to create UV-absorbing (UV–) spiders that did not reflect any light below 395 nm wavelength. These physical changes of visual signals generated by crab spiders caused honeybees to avoid flowers with UV– spiders on their petals. They also affected the perception of UV– spiders by honeybees and a potential avian predator (blue tits). Compared to UV+ spiders, UV– spiders produced less excitation of the UV-photoreceptors in honeybees and blue tits, which translated into a reduced UV-receptor contrast and a reduced overall colour contrast between UV– spiders and daisy petals. Our results reveal that a clean physical elimination of reflection in the UV range affects perception in predators and prey and ultimately changes the behaviour of prey.7 page(s

    Three-dimensional physics and the pressure of hot QCD

    Full text link
    We update Monte Carlo simulations of the three-dimensional SU(3) + adjoint Higgs theory, by extrapolating carefully to the infinite volume and continuum limits, in order to estimate the contribution of the infrared modes to the pressure of hot QCD. The sum of infrared contributions beyond the known 4-loop order turns out to be a smooth function, of a reasonable magnitude and specific sign. Unfortunately, adding this function to the known 4-loop terms does not improve the match to four-dimensional lattice data, in spite of the fact that other quantities, such as correlation lengths, spatial string tension, or quark number susceptibilities, work well within the same setup. We outline possible ways to reduce the mismatch.Comment: 14 page
    corecore